#1  
قديم 07-30-2015, 12:14 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي رابطة ضعف الاجتماعي والمعرفي والمؤشرات الحيوية في اضطرابات طيف التوحد

 

http://www.jneuroinflammation.com/content/11/1/4


https://translate.google.com/transla...2F4&edit-text=

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس
  #2  
قديم 07-30-2015, 12:17 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي استعراض طيف التوحد اضطرابات-a الوراثة

 

http://www.nature.com/gim/journal/v1...m9201151a.html


https://translate.google.com/transla...tml&edit-text=

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس
  #3  
قديم 07-30-2015, 12:22 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي السيتوكينات الالتهابية: المؤشرات الحيوية المحتملة من المناعية اختلال وظيفي في اضطرابات طيف التوحد

 

التوحد هو اضطراب المنشأ العصبي البيولوجي التي تتميز مشاكل في الاتصال والمهارات الاجتماعية والسلوك المتكرر. بعد أكثر من ستة عقود من البحث، ومسببات مرض التوحد ما زال مجهولا، وقد أثبتت المؤشرات الحيوية لا أن يكون سمة من سمات التوحد. وأظهر عدد من الدراسات أن مستويات خلوى في الدم والدماغ، والسائل النخاعي (CSF) من الموضوعات التوحد تختلف من أن الأفراد الأصحاء. على سبيل المثال، سلسلة من الدراسات تشير إلى أن انترلوكين 6 (IL-6)، نخر الورم α factor- (TNF- α)، وγ interferon- (IFN- γ) هي مرتفعة بشكل كبير في الأنسجة المختلفة في المواضيع التوحد. ومع ذلك، والتعبير عن بعض السيتوكينات، مثل IL-1، IL-2، وتحويل β النمو factor- (TGF- β)، وعامل تحفيز مستعمرة الكريات البيضاء بلعم (GM-CSF)، أمر مثير للجدل، والدراسات المختلفة لها العثور على نتائج مختلفة في الأنسجة المختلفة. في هذا الاستعراض، ركزنا على عدة أنواع من proinflammatory والمضادة للالتهابات السيتوكينات التي قد تؤثر على مختلف مسارات إشارة الخلية وتلعب دورا في آلية المرضية في جسم المريض من اضطرابات طيف التوحد.

1 المقدمة

اضطرابات طيف التوحد (ASD) هي مجموعة معقدة من الاضطرابات النمائية العصبية الشديدة التي تؤثر على أكثر من 1٪ من الأطفال في الولايات المتحدة [ 1 ]. وتشمل الأعراض النمطية لمرض التوحد ضعف في التفاعل الاجتماعي، والعجز في التواصل اللفظي وغير اللفظي، والسلوكيات المتكررة والمصالح مقيدة [ 2 ]. على الرغم من أن المسببات الدقيق للاضطراب لم يتم تحديدها، وقد اعترفت وجود صلة بين الاستجابات المناعية تغيير وASD لأول مرة منذ ما يقرب من 40 عاما. وقد أبرزت الدراسات العصبية الحيوية في ASD الممرات المشتركة في التنمية العصبية، المشبك اللدونة، تشوهات بنيوية في الدماغ والإدراك والسلوك. بالإضافة إلى ذلك، كما تم الإبلاغ عن خلل في الاستجابة المناعية الخلوية في الأطفال الذين يعانون من التوحد. على وجه الخصوص، وانخفاض النشاط السامة للخلايا ومستويات مرتفعة من السيتوكينات proinflammatory المختارة التي تنتجها الخلايا وحيدة النواة الدموية المحيطية، مثل عامل نخر الورم (TNF- α) وIL1 β، وقد ثبت أن يعطل النمو العصبي [ 3 ، 4 ].

السيتوكينات هي البروتينية التي هي 8-25 كيلو دالتون في حجم وتشمل المحفزة، كيموكينات، إنترفيرون، عوامل نخر الورم (TNFs)، وعوامل النمو. وقد ثبت السيتوكينات لتنظيم نمو الخلايا وانتشار الأنسجة العصبية وتعدل استجابات المضيف للعدوى والإصابة، والالتهابات، وأمراض المسببات غير مؤكد [ 5 ]. يمكن التعبير الديناميكي السيتوكينات مختلفة تعديل وظيفة الجهاز المناعي. على سبيل المثال، وزيادة مستويات الانترفيرون غاما (γ IFN-) وIL-12 يمكن أن تحفز التهاب، في حين أن زيادة إنتاج TGF- β يمكن تنظيم سلبا التهاب [ 6 ]. وقد أظهر عدد من الدراسات الحديثة أن مستويات مختلفة السيتوكينات الالتهابية تختلف في الخلايا وحيدة النواة في الدم والمصل والبلازما، وأنسجة المخ، والسائل النخاعي من الموضوعات التوحد مقارنة مع المواد الطبيعية، والتي قد تضعف القدرة المناعية في الجهاز العصبي المركزي ( CNS) وتحفيز الإنتاج وتنشيط الخلايا الدبقية الصغيرة في الدماغ [ 7 ، 8 ]. الخلايا الدبقية الصغيرة هي الخلايا المناعية المقيمين الفريدة للجهاز العصبي المركزي. يتصرفون وسطاء الابتدائية اعتبارا من الالتهاب، والمشاركة في مراقبة المناعية للجهاز العصبي المركزي وتقليم متشابك خلال النمو العصبي الطبيعي. أدلة متزايدة تشير إلى أن تفعيل دبقية المزمن قد يساهم في تطور وتقدم من الاضطرابات العصبية. يمكن أن الخلايا الدبقية الصغيرة النشطة تحفز إنتاج السيتوكينات الموالية للالتهابات مثل IL-1، IL-6، وα TNF-، التي يقصد بها عادة لمنع المزيد من الضرر لأنسجة المخ. ومع ذلك، يمكن تنشيط الخلايا الدبقية الصغيرة بشكل غير طبيعي في بعض الأحيان يكون السامة للخلايا العصبية والخلايا الدبقية الأخرى. تنشيط الخلايا الدبقية الصغيرة هو سمة بارزة من سمات التوحد، وهناك تفاعل معقد بين الخلايا الدبقية والسيتوكينات. وي آخرون. وجدت أن IL-6 الارتفاع يمكن أن تعدل السلوكيات مثل مرض التوحد من خلال العاهات من تشكيل المشبك والتنمية العمود الفقري الجذعية، والخلايا العصبية التوازن الدائرة [ 7 ].

في هذا الاستعراض، ركزنا على عدة أنواع من proinflammatory والسيتوكينات المضادة للالتهابات التي قد تؤثر على مختلف مسارات إشارة الخلية وتلعب دورا في آلية المسببة للأمراض التي قد تكون مسؤولة عن مرض التوحد (الجدول 1 ).

http://www.hindawi.com/journals/mi/2015/531518/


https://translate.google.com/transla...%2F&edit-text=

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس
  #4  
قديم 07-30-2015, 12:26 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي

 

Did you mean: Protocadherin α (PCDHA) as a novel susceptibility gene for autism. J Psychiatry Neurosci. 2012 Oct 2;37(6):120058. doi: 10.1503/jpn.120058. [Epub ahead of print] Anitha A, Thanseem I, Nakamura K, Yamada K, Iwayama Y, Toyota T, Iwata Y, Suzuki K, Sugiyama T, Tsujii M, Yoshikawa T, Mori N. Abstract Background: Synaptic dysfunction has been shown to be involved in the pathogenesis of autism. We hypothesized that the protocadherin α gene cluster (PCDHA), which is involved in synaptic specificity and in serotonergic innervation of the brain, could be a suitable candidate gene for autism. Methods: We examined 14 PCDHA single nucleotide polymorphisms (SNPs) for genetic association with autism in DNA samples of 3211 individuals (841 families, including 574 multiplex families) obtained from the Autism Genetic Resource Exchange. Results: Five SNPs (rs251379, rs1119032, rs17119271, rs155806 and rs17119346) showed significant associations with autism. The strongest association (p < 0.001) was observed for rs1119032 (z score of risk allele G = 3.415) in multiplex families; SNP associations withstand multiple testing correction in multiplex families (p = 0.041). Haplotypes involving rs1119032 showed very strong associations with autism, withstanding multiple testing corrections. In quantitative transmission disequilibrium testing of multiplex fam - ilies, the G allele of rs1119032 showed a significant association (p = 0.033) with scores on the Autism Diagnostic Interview-Revised (ADI-R)_D (early developmental abnormalities). We also found a significant difference in the distribution of ADI-R_A (social interaction) scores between the A/A, A/G and G/G genotypes of rs17119346 (p = 0.002). Limitations: Our results should be replicated in an in - dependent population and/or in samples of different racial backgrounds. Conclusion: Our study provides strong genetic evidence of PCDHA as a potential candidate gene for autism. Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol Psychiatry. 2012 Sep 11. doi: 10.1038/mp.2012.126. [Epub ahead of print] Skafidas E, Testa R, Zantomio D, Chana G, Everall IP, Pantelis C. Abstract Autism spectrum disorder (ASD) depends on a clinical interview with no biomarkers to aid diagnosis. The current investigation interrogated single-nucleotide polymorphisms (SNPs) of individuals with ASD from the Autism Genetic Resource Exchange (AGRE) database. SNPs were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG)-derived pathways to identify affected cellular processes and develop a diagnostic test. This test was then applied to two independent samples from the Simons Foundation Autism Research Initiative (SFARI) and Wellcome Trust 1958 normal birth cohort (WTBC) for validation. Using AGRE SNP data from a Central European (CEU) cohort, we created a genetic diagnostic classifier consisting of 237 SNPs in 146 genes that correctly predicted ASD diagnosis in 85.6% of CEU cases. This classifier also predicted 84.3% of cases in an ethnically related Tuscan cohort; however, prediction was less accurate (56.4%) in a genetically dissimilar Han Chinese cohort (HAN). Eight SNPs in three genes (KCNMB4, GNAO1, GRM5) had the largest effect in the classifier with some acting as vulnerability SNPs, whereas others were protective. Prediction accuracy diminished as the number of SNPs analyzed in the model was decreased. Our diagnostic classifier correctly predicted ASD diagnosis with an accuracy of 71.7% in CEU individuals from the SFARI (ASD) and WTBC (controls) validation data sets. In conclusion, we have developed an accurate diagnostic test for a genetically homogeneous group to aid in early detection of ASD. While SNPs differ across ethnic groups, our pathway approach identified cellular processes common to ASD across ethnicities. Our results have wide implications for detection, intervention and prevention of ASD.Molecular Psychiatry advance online publication, 11 September 2012; doi:10.1038/mp.2012.126. Use of artificial intelligence to shorten the behavioral diagnosis of autism. PLoS One. 2012;7(8):e43855. Epub 2012 Aug 27. Wall DP, Dally R, Luyster R, Jung JY, Deluca TF. Abstract The Autism Diagnostic Interview-Revised (ADI-R) is one of the most commonly used instruments for assisting in the behavioral diagnosis of autism. The exam consists of 93 questions that must be answered by a care provider within a focused session that often spans 2.5 hours. We used machine learning techniques to study the complete sets of answers to the ADI-R available at the Autism Genetic Research Exchange (AGRE) for 891 individuals diagnosed with autism and 75 individuals who did not meet the criteria for an autism diagnosis. Our analysis showed that 7 of the 93 items contained in the ADI-R were sufficient to classify autism with 99.9% statistical accuracy. We further tested the accuracy of this 7-question classifier against complete sets of answers from two independent sources, a collection of 1654 individuals with autism from the Simons Foundation and a collection of 322 individuals with autism from the Boston Autism Consortium. In both cases, our classifier performed with nearly 100% statistical accuracy, properly categorizing all but one of the individuals from these two resources who previously had been diagnosed with autism through the standard ADI-R. Our ability to measure specificity was limited by the small numbers of non-spectrum cases in the research data used, however, both real and simulated data demonstrated a range in specificity from 99% to 93.8%. With incidence rates rising, the capacity to diagnose autism quickly and effectively requires careful design of behavioral assessment methods. Ours is an initial attempt to retrospectively analyze large data repositories to derive an accurate, but significantly abbreviated approach that may be used for rapid detection and clinical prioritization of individuals likely to have an autism spectrum disorder. Such a tool could assist in streamlining the clinical diagnostic process overall, leading to faster screening and earlier treatment of individuals with autism. Use of machine learning to shorten observation-based screening and diagnosis of autism. Transl Psychiatry. 2012 Apr 10;2:e100. doi: 10.1038/tp.2012.10. Wall DP, Kosmicki J, Deluca TF, Harstad E, Fusaro VA. Abstract The Autism Diagnostic Observation Schedule-Generic (ADOS) is one of the most widely used instruments for behavioral evaluation of autism spectrum disorders. It is composed of four modules, each tailored for a specific group of individuals based on their language and developmental level. On average, a module takes between 30 and 60 min to deliver. We used a series of machine-learning algorithms to study the complete set of scores from Module 1 of the ADOS available at the Autism Genetic Resource Exchange (AGRE) for 612 individuals with a classification of autism and 15 non-spectrum individuals from both AGRE and the Boston Autism Consortium (AC). Our analysis indicated that 8 of the 29 items contained in Module 1 of the ADOS were sufficient to classify autism with 100% accuracy. We further validated the accuracy of this eight-item classifier against complete sets of scores from two independent sources, a collection of 110 individuals with autism from AC and a collection of 336 individuals with autism from the Simons Foundation. In both cases, our classifier performed with nearly 100% sensitivity, correctly classifying all but two of the individuals from these two resources with a diagnosis of autism, and with 94% specificity on a collection of observed and simulated non-spectrum controls. The classifier contained several elements found in the ADOS algorithm, demonstrating high test validity, and also resulted in a quantitative score that measures classification confidence and extremeness of the phenotype. With incidence rates rising, the ability to classify autism effectively and quickly requires careful design of assessment and diagnostic tools. Given the brevity, accuracy and quantitative nature of the classifier, results from this study may prove valuable in the development of mobile tools for preliminary evaluation and clinical prioritization-in particular those focused on assessment of short home videos of children--that speed the pace of initial evaluation and broaden the reach to a significantly larger percentage of the population at risk. Immune function genes CD99L2, JARID2 and TPO show association with autism spectrum disorder. Mol Autism. 2012 Jun 9;3(1):4. [Epub ahead of print] Ramos PS, Sajuthi S, Langefeld CD, Walker SJ. Abstract BACKGROUND: A growing number of clinical and basic research studies have implicated immunological abnormalities as being associated with and potentially responsible for the cognitive and behavioral deficits seen in autism spectrum disorder (ASD) children. Here we test the hypothesis that immune-related gene loci are associated with ASD. FINDINGS: We identified 2,012 genes of known immune-function via Ingenuity Pathway Analysis. Family-based tests of association were computed on the 22,904 single nucleotide polymorphisms (SNPs) from the 2,012 immune-related genes on 1,510 trios available at the Autism Genetic Resource Exchange (AGRE) repository. Several SNPs in immune-related genes remained statistically significantly associated with ASD after adjusting for multiple comparisons. Specifically, we observed significant associations in the CD99 molecule-like 2 region (CD99L2, rs11796490, P = 4.01 x 10-06, OR = 0.68 (0.58-0.80)), in the jumonji AT rich interactive domain 2 (JARID2) gene (rs13193457, P = 2.71 x 10-06, OR = 0.61 (0.49-0.75)), and in the thyroid peroxidase gene (TPO) (rs1514687, P = 5.72 x 10-06, OR = 1.46 (1.24- 1.72)). CONCLUSIONS: This study suggests that despite the lack of a general enrichment of SNPs in immune function genes in ASD children, several novel genes with known immune functions are associated with ASD.
α Protocadherin (PCDHA) باسم الجينات قابلية رواية لمرض التوحد.
J الطب النفسي Neurosci. 2 أكتوبر 2012؛ 37 (6): 120058. دوى: 10.1503 / jpn.120058. [النشر الإلكتروني قبل الطباعة]
Anitha A، Thanseem I، ناكامورا K، K يامادا، إن Iwayama Y، تويوتا T، ايواتا Y، K سوزوكي، سوجياما T، Tsujii M، يوشيكاوا T، موري N.

ملخص

وقد تبين الخلل متشابك أن تشارك في التسبب في مرض التوحد: الخلفية. افترضنا أن الكتلة protocadherin α الجين (PCDHA)، التي تشارك في خصوصية متشابك وتعصيب هرمون السيروتونين في الدماغ، يمكن أن يكون الجين مرشح مناسب لمرض التوحد. الأساليب: درسنا 14 PCDHA الأشكال النووية المنفردة (النيوكلوتايد) للجمعية الجينية مع التوحد في عينات DNA من 3211 فردا (841 أسرة، بما في ذلك 574 أسرة متعددة) تم الحصول عليها من AutismGenetic ResourceExchange. وأظهرت خمسة تعدد الأشكال (rs251379، rs1119032، rs17119271، rs155806 وrs17119346) جمعيات كبيرة مع التوحد: نتائج. ولوحظ أقوى الجمعيات (P <0.001) لrs1119032 (ض درجة من أليل خطر G = 3.415) في الأسر متعددة. جمعيات SNP الصمود متعددة تصحيح الاختبار في الأسر متعددة (ع = 0.041). وأظهرت النسخ المتنوعة التي تشمل rs1119032 جمعيات قوية جدا مع التوحد، وتحملوا عدة تصويبات الاختبار. في الكمي اختبار اختلال التوازن نقل متعدد الاتحاد الماليزي - ilies، أظهر أليل G من rs1119032 جود علاقة وثيقة (ع = 0.033) مع درجات على المنقحة مقابلة (ADI-R) _D تشخيص التوحد (في وقت مبكر تشوهات النمو). كما وجدنا فرقا كبيرا في توزيع ADI-R_A (التفاعل الاجتماعي) عشرات بين A / A، A / G و G / G المورثات من rs17119346 (P = 0.002). القيود: نتائجنا يجب أن تتكرر في في - السكان الذين يعتمدون و / أو في عينات من خلفيات عرقية مختلفة. الخلاصة: دراستنا تقدم دليلا وراثي قوي من PCDHA باسم الجينات مرشح محتمل لمرض التوحد.

توقع تشخيص التوحد اضطراب طيف باستخدام تحليل المسار الجيني.
مول الطب النفسي. 2012 سبتمبر 11. دوى: 10.1038 / mp.2012.126. [النشر الإلكتروني قبل الطباعة]
Skafidas E، تيستا R، Zantomio D، G شانا، Everall IP، بانتيليس C.

ملخص

اضطراب طيف التوحد (ASD) يعتمد على المقابلة الإكلينيكية مع عدم وجود المؤشرات الحيوية للمساعدة التشخيص. التحقيق للاستجواب الأشكال الحالية احدة النوكليوتيدات (النيوكلوتايد) من الأفراد مع ASD من قاعدة البيانات التوحد لتبادل الموارد الوراثية (أوافق). تم تعيين تعدد الأشكال إلى كيوتو موسوعة الجينات والجينوم (KEGG) مسارات -derived لتحديد العمليات الخلوية المتضررة وتطوير اختبار تشخيصي. ثم تم تطبيق هذا الاختبار لعينتين مستقلتين من مبادرة مؤسسة سيمونز التوحد أبحاث (SFARI) ويلكوم ترست 1958 العادية فوج الولادة (WTBC) للمصادقة. باستخدام بيانات اغري SNP من المركزي الأوروبي (CEU) الفوج، أنشأنا المصنف التشخيص الجيني التي تتكون من 237 تعدد الأشكال في 146 الجينات التي توقع ASD التشخيص بشكل صحيح في 85.6٪ من الحالات CEU. وتوقع هذا المصنف 84.3٪ من الحالات في فوج توسكان بدوافع عرقية؛ ومع ذلك، كان أقل دقة التنبؤ (56.4٪) في غير متشابهة وراثيا فوج هان الصينية (HAN). وكان ثمانية تعدد الأشكال في ثلاثة جينات (KCNMB4، GNAO1، GRM5) أكبر الأثر في مصنف مع بعض التصرف كما تعدد الأشكال الضعف، في حين أن البعض الآخر واقية. وقد انخفض دقة التنبؤ تضاءل عدد تعدد الأشكال التي تم تحليلها في النموذج. لدينا المصنف التشخيص توقع بشكل صحيح ASD التشخيص بدقة تبلغ 71.7٪ في CEU الأفراد من SFARI (ASD) وWTBC (الضوابط) مجموعات التحقق من صحة البيانات. في الختام، قمنا بتطوير اختبار تشخيصي دقيق لمجموعة متجانسة وراثيا للمساعدة في الكشف المبكر عن ASD. بينما تعدد الأشكال تختلف بين المجموعات العرقية، وتحديد نهج مسار دينا العمليات الخلوية المشتركة إلى ASD عبر الأعراق. نتائجنا لها آثار واسعة للكشف والتدخل والوقاية من ASD.Molecular الطب النفسي مقدما نشر على شبكة الإنترنت، 11 سبتمبر 2012. دوى: 10.1038 / mp.2012.126.


استخدام الذكاء الاصطناعي لتقصير التشخيص السلوكي لمرض التوحد.
بلوس واحد. 2012؛ 7 (8): e43855. النشر الإلكتروني 2012 27 أغسطس.
جدار DP، دالي R، Luyster R، جونغ JY، ديلوكا TF.

ملخص
لتشخيص التوحد المعدلة-مقابلة (ADI-R) هي واحدة من الأكثر استخداما أدوات للمساعدة في التشخيص السلوكي لمرض التوحد. يتكون الامتحان من 93 الأسئلة التي يجب الإجابة عليها من قبل مقدم الرعاية ضمن جلسة المركزة التي غالبا ما يمتد 2.5 ساعة. استخدمنا تقنيات التعلم الآلي لدراسة مجموعات كاملة من الأجوبة على ADI-R متوفرة في التوحد للأوراق الأبحاث الوراثية (أوافق) ل891 أشخاص مصابين بالتوحد و 75 الأفراد الذين لم تستوفي معايير تشخيص التوحد. أظهر تحليلنا أن 7 من عناصر 93 الواردة في ADI-R كانت كافية لتصنيف التوحد مع الدقة الإحصائية 99.9٪. اختبرنا كذلك دقة هذه المصنف 7-قضية ضد مجموعات كاملة من الإجابات من اثنين من مصادر مستقلة، ومجموعة من 1654 الأفراد المصابين بالتوحد من مؤسسة سيمونز وجمع 322 الأفراد المصابين بالتوحد من بوسطن التوحد اتحاد. في كلتا الحالتين، المصنف دينا يؤديها مع الدقة الإحصائية ما يقرب من 100٪، وتصنيف صحيح لكن كل واحد من الأفراد من هذه الموارد اللذين سبق ان تم تشخيص التوحد من خلال معيار ADI-R. لدينا القدرة على قياس خصوصية محدودة من قبل عدد قليل من حالات عدم الطيف في البيانات البحثية المستخدمة، ومع ذلك، أظهرت البيانات سواء الحقيقية ومحاكاة مجموعة في خصوصية من 99٪ إلى 93.8٪. مع ارتفاع معدل الاصابة، والقدرة على تشخيص مرض التوحد بشكل سريع وفعال يتطلب تصميم دقيق لأساليب التقييم السلوكية. لنا هو محاولة أولية لتحليل بأثر رجعي مستودعات البيانات الكبيرة لاستخلاص نهجا دقيقا، ولكن يختصر كثيرا التي يمكن استخدامها للكشف السريع وترتيب الأولويات السريرية الأفراد عرضة لاضطرابات طيف التوحد. هذه أداة يمكن أن تساعد في تبسيط عملية التشخيص السريري بشكل عام، مما يؤدي إلى سرعة الفحص والعلاج في وقت سابق من الأفراد المصابين بالتوحد.


استخدام التعلم الآلي لتقصير الفرز القائم على الملاحظة والتشخيص لمرض التوحد.
Transl الطب النفسي. 2012 أبريل 10؛ 2: E100. دوى: 10.1038 / tp.2012.10.
جدار DP، Kosmicki J، ديلوكا TF، هارستاد E، Fusaro تقدير VA.

ملخص
لتشخيص التوحد مراقبة الجدول الزمني للعام (ADOS) هي واحدة من الأكثر استخداما على نطاق واسع أدوات لتقييم السلوكي للاضطرابات طيف التوحد. وهو يتألف من أربع وحدات، كل مصممة خصيصا لمجموعة معينة من الأفراد على أساس اللغة ومستوى النمو. في المتوسط، وحدة ما يستغرق ما بين 30 و 60 دقيقة لتحقيق ذلك. كنا مجموعة من الخوارزميات آلة التعلم لدراسة مجموعة كاملة من عشرات من الوحدة 1 من ADOS المتاحة في بورصة التوحد الوراثية الموارد (أوافق) ل612 الأشخاص الذين يعانون من تصنيف التوحد و15 غير الطيف الأفراد من كلا اغري و التوحد اتحاد بوسطن (AC). وأشار تحليلنا أن 8 من 29 البنود الواردة في الوحدة 1 من ADOS كانت كافية لتصنيف التوحد مع دقة 100٪. نحن التحقق من صحة مزيد من دقة هذا البند ثمانية المصنف ضد مجموعات كاملة من عشرات من اثنين من مصادر مستقلة، وهي مجموعة من 110 أشخاص يعانون من مرض التوحد من AC ومجموعة من 336 أشخاص يعانون من مرض التوحد من مؤسسة سيمونز. في كلتا الحالتين، المصنف دينا يؤديها مع ما يقرب من 100٪ حساسية وتصنيفها بشكل صحيح جميع ولكن اثنين من الأفراد من هذه الموارد اثنين مع تشخيص مرض التوحد، ومع 94٪ خصوصية على مجموعة من الضوابط عدم الطيف الملاحظة والمحاكاة. يتضمن المصنف عدة عناصر وجدت في خوارزمية ADOS، مما يدل على اختبار صلاحية عالية، وأدى أيضا في درجة الكمية التي يقيس ثقة تصنيف وشكل قاطع من النمط الظاهري. مع ارتفاع معدل الاصابة، والقدرة على تصنيف التوحد بشكل فعال وبسرعة يتطلب تصميم دقيق لتقييم وأدوات التشخيص. وبالنظر إلى الإيجاز والدقة والطبيعة الكمية للمصنف، قد نتائج هذه الدراسة تثبت قيمة في تطوير أدوات متنقلة لتقييم أولي والسريرية الأولويات على وجه الخصوص تلك التي تركز على تقييم أشرطة الفيديو المنزلية قصيرة للأطفال - أن سرعة وتيرة التقييم الأولي وتوسيع نطاق الحصول على نسبة مئوية أكبر بكثير من السكان المعرضين للخطر.

الجينات وظيفة المناعة CD99L2، JARID2 وTPO إظهار ارتباط ذلك باضطراب طيف التوحد.
مول التوحد. 9 يونيو 2012 (3)؛ (1): 4. [النشر الإلكتروني قبل الطباعة]
راموس PS، Sajuthi S، Langefeld CD، ووكر SJ.

ملخص
خلفية:

وهناك عدد متزايد من الدراسات والأبحاث السريرية والأساسية قد تورط الشذوذات المناعية باعتباره مرتبطا مع ومسؤولة المحتمل لالعجز المعرفي والسلوكي ينظر في اضطراب طيف التوحد (ASD) الأطفال. نحن هنا اختبار الفرضية التي ترتبط مواضع الجينات المرتبطة بالمناعة مع ASD.

النتائج:
حددنا 2012 الجينات المعروفة المناعي وظيفة عن طريق الإبداع تحليل المسار. حسبت الاختبارات القائمة على الأسرة لجمعية على 22904 النوكليوتيدات المفردة (النيوكلوتايد) من 2012 الجينات المرتبطة بالمناعة على 1510 ثلاثيات المتاحة في التوحد لتبادل الموارد الوراثية (أوافق) مستودع. عدة تعدد الأشكال في الجينات المرتبطة بالمناعة لا تزال مرتبطة إحصائيا مع ASD بعد تعديل مقارنات متعددة. على وجه التحديد، لاحظنا جمعيات كبيرة في CD99 مثل جزيء 2 المنطقة (CD99L2، rs11796490، P = 4.01 X 10-06، OR = 0.68 (0،58-0،80))، في jumonji AT الغنية مجال تفاعلي 2 (JARID2) الجينات ( rs13193457، P = 2.71 X 10-06، OR = 0.61 (0،49-0،75))، وهذا الجين البيروكسيديز الغدة الدرقية (TPO) (rs1514687، P = 5.72 X 10-06، OR = 1.46 (1.24- 1.72)).

الاستنتاجات:
تشير هذه الدراسة إلى أنه على الرغم من عدم وجود إثراء العام من تعدد الأشكال في الجينات وظيفة المناعة في الأطفال ASD، ترتبط عدة جينات جديدة ذات وظائف المناعة المعروف مع ASD.

http://agre.autismspeaks.org/site/c....blications.htm

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس
  #5  
قديم 07-30-2015, 12:31 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي

 

Did you mean: Neuroimmunology of Autism Spectrum Disorder. Neurotransmitters as predictive biomarkers of responsiveness to substance abuse treatment Neuroimmunology of Autism Spectrum Disorder. Addressing Adrenal Imbalance: The Future of Adrenal Health Avipaxin and Modulation of the Immune System. The Clinical Utility of Urinary Neurotransmitter Analysis: An Overview. Daxitrol Essential: A Novel Approach for Controlling Cravings. Hypersensitivity Reactions and Methods of Detection. Methylation: Fundamental to a Healthy Nervous System A Novel Top-down Strategy For Addressing Autonomic Imbalances. Download PDF NEUROIMMUNOLOGY OF AUTISM SPECTRUM DISORDER David Marc, MSa; Kelly Olson, PhD NeuroScience, Inc., 373 280th St., Osceola, WI 54020, United States address correspondence to: david.marc@neurorelief.com Abstract Autism is a developmental disorder characterized by immunological and neurological abnormalities. The role of cytokines in the pathophysiology of autism has been researched suggesting a relationship with altered blood-brain barrier permeability and subsequent neuroinflammation. Cytokine recruitment to the CNS may result in altered neurotransmitter signaling and the behavioral manifestation of autism symptoms. Other immune mediated events such as changes in the number and activity of natural killer cells, macrophages, immunoglobulins, and glutathione may contribute to altered neuronal signaling and neurotransmitter imbalances. The purpose of this overview is to examine the relationship between immune system and nervous system dysfunction to determine biomarkers for autism spectrum disorder. We will explore the utility of serum cytokines and urinary neurotransmitter analyses as biomarkers for autism. Introduction Autism is a pervasive developmental disorder characterized by impaired development of social interaction and communication, and a markedly restricted repertoire of activities and interests (American Psychiatric Association, 1994). The exact etiology of autism remains largely unknown, however, literature has emerged to suggest genetic, neurological, immunological, and environmental contributions. Immunological and environmental factors, such as diet, infection, and xenobiotics play critical roles in the development of autism. (Ivarsson, Bjerre, Vegfors, and Ahlfors, 1990; Wakefield et al., 1998; Edelson and Cantor, 2002; Fatemi et al., 2002; Kibersti and Roberts, 2002). Abnormalities in enzymatic function (Fatemi et al., 2002a), autoantibodies to brain proteins (Vojdani et al., 2002), and maternal infections during pregnancy (Shi et al., 2003) have been indicated in the autism population. Additionally, pathological alterations in genes involved in the patterning of the central nervous system, biochemical pathways, development of dendrites and synapses, and genes associated with the immune system have been observed in this population (Burber and Warren, 1998; Palmen, Engeland, Hof, and Schmitz, 2004; Polleux and Lauder, 2004; Cohen et al., 2005; Crawley, 2007; Glessner et al., 2009; Wang et al., 2009). Interestingly, an emerging body of evidence is growing concerning the link between abnormal immune function and neurological dysfunction with autism spectrum disorders. At critical times of infantile development, immune dysregulation may result in the release of immunomodulatory molecules, such as chemokines and cytokines, leading to altered neuronal development and neural function (Cohly & Panja, 2005). Chemokines and cytokines are proteins that manage immune cell trafficking and cellular arrangement of immune organs and determine appropriate immune responses (Borish & Steinke, 2003). Cytokines can be transported to and/or synthesized in the central nervous system (CNS) thereby establishing communication between peripheral immune cells and CNS neurons (Dunn, 2006). The purpose of this overview is to identify neurological and immunological abnormalities that exist in individuals with autism. Further, it will become critically apparent that neuroimmune biomarker testing for autism can identify these abnormalities and ensure therapeutic effectiveness. Cytokines and Neurotransmission Cytokines released by immune cells, particularly interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α), communicate with the CNS to affect neural activity and modify behaviors, hormone release, and "normal" autonomic function (Dunn, 2006). Cytokines can enter the brain by various mechanisms including active transport or direct entry through a compromised blood-brain barrier. Active transport mechanisms that involve a saturable system have been documented for IL-1 and TNF-α (Dunn, 1992; Gutierrez, Banks, and Kastin, 1993; Gutierrez, Banks, Kastin, 1994). Additionally, Maier and colleagues (1998) found that cytokines may directly enter the central nervous system at circumventricular regions, predominantly the area postrema, where the blood brain barrier is less protective (Pavlov et al., 2003). Other circumventricular regions of potential cytokine entry include the pineal gland, subfornical organ, organum vasculosum of the lamina terminalis, choroid plexus, median eminence, subcommissural organ, and posterior pituitary (Ganong, 2000). Upon entry into the CNS, cytokines promote regulatory signals in the brain, through augmentation of hypothalamic-pituitary-adrenal (HPA) axis activity and vagal efferents, which can modify peripheral immune status. Enhanced HPA axis release of epinephrine and cortisol can decrease the release of pro-inflammatory cytokines from macrophages in the periphery (Pavlov et al., 2003). In addition, enhanced vagal efferent activity can trigger the release of acetylcholine from peripheral parasympathetic nerve endings, decreasing the release of pro-inflammatory cytokines (Pavlov et al., 2003). It is therefore evident that the immune system and nervous system communicate to maintain homeostasis, yet under excessive immune challenges alterations in neuronal signaling can develop. Studies have shown that peripheral activation of cytokines can lead to CNS release of various neurotransmitters. Specifically, IL-1 administration may promote CNS release of norepineprhine, serotonin, dopamine, glutamate, and gamma-amino-butyric-acid (GABA) (Dunn, 1992; Zalcman et al., 1994; Casamenti et al., 1999; Luk et al., 1999; Huang and O'Banion, 1998). With enhanced turnover of these neurotransmitters, significant neurological and behavioral alterations transpire. Research has shown how immune challenges can alter neurotransmission leading to behavioral changes and psychiatric disorders (Kronfol & Remick, 2000). For example, elevated levels of interleukin-6 (IL-6) have been associated with depressive symptoms (Bob et al., 2009). In Autism, alteration in immune system function may contribute to impaired neurological signaling. A possible mechanism contributing to neuronal dysfunction in the autistic brain is the transport of noxious substances across the blood-brain barrier into the CNS leading to autoimmunity. Studies have shown how cytokines, chemokines, immunoglobulins, and natural killer cells promote the recruitment of noxious chemicals in the brains of autistic individuals, as well as contribute to autoimmunity (Ashwood et al., 2006). Proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1) and thymus activation-regulated chemokine (TARC), along with cytokines, such as TNF-α, were consistently elevated in the brains of individuals with autism (Cohly & Panja, 2005). The transport or synthesis of cytokines in the brain may contribute to neuroinflammation and possible neurotransmitter imbalances (Cohly & Panja, 2005). Furthermore, Ashwood and colleagues (2008) found that reduced levels of the modulatory cytokine, transforming growth factor-β1 (TGF-β1), in autistic children contributed to the dysregulation of adaptive behaviors and predisposal for autoimmune responses. Autoimmunity can be detrimental to normal neuronal signaling and result in significant behavioral abnormalities (Ashwood et al., 2006). Vojdani and colleagues (2008) reported decreased natural killer cell activity in autistic children with low intracellular levels of glutathione, IL-2, and IL-15. Decreased natural killer cell activity has been associated with autoimmunity through alteration of cytokine production (Johansson et al, 2005). Lastly, Entrom and colleagues (2009) demonstrated elevated immunoglobulin G4 (IgG4) production in children with autism. Elevated IgG antibodies have been identified against brain-specific proteins in the hypothalamus and thalamus of autistic children, again suggesting autoimmunity (Cabanlit et al., 2007). Although limited studies on autism and autoimmunity exist, it has been hypothesized that the excess transport and synthesis of proinflammatory chemokines, cytokines, and immunoglobulins from the periphery to the CNS contribute to the development of autoimmune responses (Cohly & Panja, 2005). Autoimmunity may lead to dysregulated neuronal signaling causing behavioral manifestation of autism symptoms. Therefore, assessment of immune and nervous system function may provide biochemical targets to treat patients with these behavioral abnormalities. Nervous System Biomarkers and Autism Biomarkers are substances used as indicators of a biologic state. Research has revealed the clinical utility of urinary neurotransmitters as practical biomarkers to associate with neurotransmission (Kusaga et al., 2002; Hughes et al., 2004). Urinary neurotransmitter analysis is an innovative, minimally invasive method to assess peripheral neurotransmitter levels, and has a breadth of data to support its usefulness in clinical practice. In the 1950's, research uncovered correlations between urinary catecholamine levels and psychiatric symptoms, such as depression and anxiety (Bergsman, 1959; Carlsson et al., 1959). Recent research has examined the utility of urinary neurotransmitter analysis to categorize subsets of depression and anxiety, and to determine pharmaceutical intervention(s) (Hughes et al., 2004; Otte et al., 2005). Notwithstanding, urinary neurotransmitter analysis can further be used to assess Attention-Deficit-Hyperactivity Disorder (ADHD). Subjects with ADHD tend to have decreased urinary monoamine neurotransmitter levels (specifically, beta-phenylethylamine (PEA)) that can impair mood and attention (Kusaga et al., 2002). What's more, decreased beta-PEA levels may contribute to symptoms of inattentiveness (Berry, 2004). Overall, urinary neurotransmitter assessment can be a useful tool in any clinical practice, especially those managing psychiatric disorders. Urinary neurotransmitter analysis can identify neurotransmitter abnormalities that may contribute to behavioral changes, and thereby allow more appropriate treatment selection (Kahane, 2009). In autism, urinary neurotransmitter analysis has been utilized to examine biochemical abnormalities. As such, urinary serotonin has been the primary urinary neurotransmitter evaluated in autistic individuals. Abnormalities in urinary serotonin have been linked to immunological disturbances. A recent study found consistent elevations in the number of mast cells, along with elevated levels of urinary serotonin, in autistic patients (Castellani et al., 2009). Food, stress, or viruses can stimulate mast cells in the intestines and brains of young children. Localized and systemic immune activation can lead to enhanced cytokine and serotonin release from mast cells and disruption in the lining of the intestines and the blood-brain barrier causing altered neuronal signaling (Castellani et al., 2009). As mentioned previously, a compromised blood-brain barrier permits noxious substances entry into the brain and contribute to neuroinflammation. CNS neurotransmitter abnormalities may result from neuroinflammation leading to behavioral changes. As identified in autistic individuals, raised peripheral glutamate levels may also result from a compromised blood-brain barrier (Moreno-Fuenmayor, et al, 1996, Yip, 2007). Elevated plasma glutamate has been attributed to decreased levels of its rate- limiting enzyme glutamic acid decarboxylase (GAD) in autistic individuals (Shinohe, 2006, Yip, 2007). Specifically, Fatemi and colleagues (2002a) and Yip and others (2007) reported a reduced number of GAD 65 and 67 proteins in Purkinje cells in autistic cerebella. The decreased GAD may be due to autoantibodies specific for GAD, which has been detected in various neurological disorders (Manto et al., 2007). These autoantibodies attack the body's own cells, tissues, and/or organs, causing inflammation and tissue damage. Because GAD converts glutamate to gamma-immunobutyric acid (GABA), a decrease in this enzyme will cause subsequent increases in glutamate levels (Yip, 2007). Clinically, high glutamate levels can be excitotoxic and may lead to neurodegeneration and cognitive dysfunction (Ha et al., 2009). Studies have demonstrated that particular biochemical measurements, such as in plasma amino acid levels, are elevated in children with autism when compared to controls. Autistic children demonstrated elevated levels of plasma glutamate and aspartic acid along with taurine, phenylalanine, asparagine, tyrosine, alanine, and lysine (Moreno-Fuenmayor, Borjas, arrieta, Valera, and Socorro-Candanoza, 1996; Aldred, Moore, Fitzgerald, and Waring, 2003). These amino acid alterations may be caused by immune mediated events, vitamin insufficiency, alterations in neurotransmitter transport, or metabolic derangement. Imaging studies have further revealed abnormalities in autistic individuals, which suggest that abnormal brain growth in many major brain structures such as cerebellum, cerebral cortex, amygdala, hippocampus, corpus collosum, basal ganglia, and brain stem may contribute to behavioral abnormalities in autism (Courchesne et al., 2001; Acosta and Pearl, 2004). Moreover, research shows that reduced cerebellar volume in the autistic brain is due to decreased numbers of Purkinje cells located in the cerebellum. Altered Purkinje cell population can eventually lead to disrupted and weakened motor coordination (Palmen, Engeland, Hof, & Schmitz, 2004). Taken together, abnormal brain growth could be another factor that can contribute to peripheral neurotransmitter imbalances and behavioral manifestation of symptoms. What's more, abnormal neural development and function may result from cytokine recruitment to the CNS and therefore amino acid and neurotransmitter alterations (Cohly & Panja, 2005). Changes in amino acid levels may lead to elevated or insufficient neurotransmitter activity and thus can interfere with normal cognitive development (Aldred, et al., 2003). During infancy and adolescence, maintenance of optimal neuronal signaling is essential to ensure normal development of attentional processes, memory, and overall cognitive function, lending credence to the importance of early intervention through laboratory analysis of neurotransmitters and cytokines. Conclusion Immune system and nervous system activity must be viewed and examined as one system functioning in parallel. It is well established that neurological and immunological abnormalities exist in autistic individuals, however, the relationship between neural and immune function has just recently been emphasized. Food, stress, and viruses can activate immune cells in the periphery and result in CNS disruptions. This may lead to inflammation in the brain and eventually to behavior changes (Castellani et al., 2009). Healthcare practitioners should understand and evaluate the status of the nervous system together with the immune system to best optimize therapeutic intervention(s). Through the development of innovative laboratory tests to analyze neurotransmitters and cytokines, comprehensive information can be obtained to determine neurological and immunological abnormalities. These biochemical measures can serve as biomarkers for clinical symptoms, as well as provide significant guidance for therapeutic selection to reestablish physiological homeostasis and to benefit overall health and wellbeing. References Acosta, M.T., & Pearl, P.L. (2004). Imaging data in autism: From structure to malfunction. Seminars in Pediatric Neurology, 11, 205-213. Aldred, S., Moore, K.M., Fitzgerald, M., & Waring, R.H. (2003). Plasma amino acid levels in children with autism and their families. Journal of Autism and Developmental Disorders, 33, 93-97. American Psychiatric Association. Diagnostic and statistical manual of metal disorders. DSM-IV. 4th ed. Washington, DC: American Psychiatric Association, 1994. Ashwood, P., Enstrom, A., Krakowiak, P., Hertz-Picciotto, I., Hansen, R.L., Croen, L.A., et al. (2008). Decreased transforming growth factor beta1 in autism: A potential link between immune dysregulation and impairment in clinical behavioral outcomes. Journal of Neuroimmunology, 204(1-2), 149-153. Ashwood, P., Willis, S., & Van de Water, J. (2006). The immune response in autism: a new frontier for autism research. Journal of Leukocyte Biology, 80, 1-15. Bergsman, A. (1959) The urinary excretion of adrenaline and noradrenaline in some mental diseases; a clinical and experimental study. Acta psychiatrica Scandinavica. Supplementum, 133, 1-107. Berry, M.D. (2004a) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. Journal of Neurochemistry, 90(2), 257-271. Bob, P., Raboch, J., Maes, M., Susta, M., Pavlat, J., Jasova, D. et al. (2009). Depression, traumatic stress and interleukin-6. Journal of Affective Disorders, [Epub ahead of print]. Borish, L.C., & Steinke, J.W. (2003). 2. Cytokines and chemokines. Journal of Allergy and Clinical Immunology, 111(2), S460-S475. Burger, R.A., & Warren, R.P. (1998). Possible immunogenetic basis for autism. Mental Retardation and Developmental Disabilities Research Reviews, 4, 137-141. Cabanlit, M., Wills, S., Goines, P., Ashwood, P., & Van de Water, J. (2007). Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. The New York Academy of Sciences, 1107, 92-103. Carlsson, A., Rasmussen, E.B., & Kristjansen, P. (1959) The urinary excretion of adrenaline and noradrenaline by depressive patients during iproniazid treatment. Journal of Neurochemistry, 4, 321-324. Casamenti, F., Prosperi, C., Scali, C., et al. (1999). Interleukin-1β activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: Implications for Alzheimer's disease. Neuroscience, 91, 831-842. Castellani, M.L., Conti, C.M., Kempuraj, D.J., Salini, V., Vecchiet, J., & Tete, S. (2009). Autism and immunity: revisited study. International Journal of Immunopathology and Pharmacology, 22(1), 15-19. Cohen, D., Pichard, N., Tordjman, S., Baumann, C., Burglen, L., Excoffier, E., Lazar, G., Mazet, P., Pinquier, C., Verloes, A., & Heron, D. (2005). Specific genetic disorders and autism: Clinical contribution towards their identification. Journal of Autism and Developmental Disorders, 35, 103-116. Cohly, H.H., & Panja, A. (2005) Immunological findings in autism. International Review of Neurobiology, 71, 317-341. Courchesne, E., Karns, C.M., Davis, H.R., Ziccardi, R., Carper, R.A., Tigue, Z.D., Chisum, H.J., Moses, P., Pierce, K., Lord, C., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245-254. Crawley, J.N. (2007). Testing hypotheses about autism. Science, 318, 56-57. Dunn, A.J. (1992). Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: Comparison with interleukin-1. Journal of Pharmacology and Experimental Therapeutics, 261, 964-969. Dunn, A.J. (2006). Effects of cytokines and infections on brain neurochemistry. Clinical Neuroscience Research, 6(1-2), 52-68. Edelson, S.B., & Cantor, D.S. (2000). The neurotoxic etiology of the autistic spectrum disorder: A replicative study. Toxicology and Industrial Health, 16, 239-247. Ek, M., Kurosawa, M., Lundeberg, T., et al. (1998). Activation of vagal afferents after intravenous injection of interleukin-1β: Role of endogenous prostaglandins. Journal of Neuroscience, 18, 9471-9479. Enstrom, A., Krakowiak, P., Onore, C., Pessah, I.N., Hertz-Picciotto, I., Hansen, R.L. et al. (2009). Increased IgG4 levels in children with autism disorder. Brain, Behavior, and Immunity, 23(3), 389-395. Fatemi, S.H., Earle, J., Kanodia, R., Kist, D., Emamian, E.S., Patterson, P.H., Shi, L., & Sidwell, R. (2002). Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: Implications for genesis of autism and schizophrenia. Cellular and Molecular Neurobiology, 22, 25-33. Fatemi, et al. (2002a). Glutamic acid decarbosylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biological Psychiatry, 52, 805-810. Ganong, W.F. (2000). Circumventricular organs: Definition and role in the regulation of endocrine and autonomic function. Clinical and Experimental Pharmacology and Physiology, 27(5-6), 422-427. Glessner, J.T., Wang, K., Cai, G., Korvatska, O., Kim, C.E., Wood, S., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, [Epub ahead of print]. Goehler, L.E., Gaykema, R.P., Nguyen, K.T. et al. (1999). Interleukin-1β in immune cells of the abdominal vagus nerve: A link between the immune and nervous systems? Journal of Neuroscience, 19, 2799-2806. Gutierrez, E.G., Banks, W.A., & Kastin, A.J. (1993). Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. Journal of Neuroimmunology, 47, 169-176. Gutierrez, E.G., Banks, W.A., & Kastin, A.J. (1994). Blood-borne interleukin-1 receptor antagonist crosses the blood brain barrier. Journal of Neuroimmunology, 55, 153-160. Ha, J.S., Leem C.S., Maeng, J.S., Kwon, K.S., & Park, S.S. (2009). Chronic glutamate toxicity in mouse cortical neuron culture. Brain Research, [Epub ahead of print]. Hansen, M.K., Taishi, P., Chen, Z. et al. (1998). Vagotomy blocks the induction of interleukin-1β (IL-1β) mRNA in the brain of rats in response to systemic IL-1β. Journal of Neuroscience, 18, 2247-2253. Huang, T.L., & O'Banion, M.K. (1998). Interleukin-1β and tumor necrosis factor-alpha suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes. Journal of Neuroscience, 71, 1436-1442. Hughes, J.W., Watkins, L., Blumenthal, J.A., Kuhn, C., & Sherwood, A. (2004) Depression and anxiety symptoms are related to increased 24-hour urinary norepinephrine excretion among healthy middle-aged women. Journal of Psychosomatic Research, 57(4), 353-358. Iversson, S.A., Bjerre, L., Vegfors, P., & Ahlfors, K. (1990). Autism as one of several abnormalities in two children with congenital cytomegalovirus infection. Neuropediatrics, 21, 102-103. Johansson, S., Berg, L., Hall, H., & Hoglund, P. (2005). NK cells: Elusive players in autoimmunity. Trends in Immunology, 26, 613-618. Kahane, A. (2009). Urinary Neurotransmitter Analysis as a Biomarker for Psychiatric Disorders. Townsend Letter, 1, 70-72. Kibersti, P., & Roberts, L. (2002). It's Not Just the Genes. Science, 296, 685. Kronfol, Z., & Remick, D. (2000). Cytokines and the brain: implications for clinical psychiatry. American Journal of Psychiatry, 158(7), 1163-1164. Kusaga, A., Yamashita, Y., Koeda, T., Hiratani, M., Kaneko, M., Yamada, S., & Matsuishi, T. (2002) Increased urine phenylethylamine after methylphenidate treatment in children with ADHD. Annals of Neurology, 52(3), 372-374. Layé, S., Bluthé, R.M., Kent, S. et al. (1995). Subdiphragmatic vagotomy blocks induction of Il-1 mRNA in mice brain in response to peripheral LPS. American Journal of Physiology, 268, R1327-R1331. Luk, W.P, Zhang, Y., White, T.D. et al. (1999). Adenosine. A mediator of interleukin-1β ??induced hippocampol synaptic inhibition. Journal of Neuroscience, 19, 4238-4244. Manto, M.U., Laute, M.A., Aguera, M., Rogemond, V., Pandolfo, M., & Honnorat, J. (2007). Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Annals of Neurology, 61(6), 544-551. Maier, S.F., Goehler, L.E., Fleshner, M. et al. (1998). The role of the vagus nerve in cytokine-to-brain communication. Annals of the New York Academy of Sciences, 840, 289-300. Moreno-Fuenmayor, H., Borjas, L., Arrieta, A., Valera, V., & Socorro-Candanoza, L. (1996). Plasma excitatory amino acids in autism. The Journal of Clinical Investigation, 37(2), 113-128. Otte, C., Neylan, T.C., Pipkin, S.S., Browner, W.S., & Whooley, M.A. (2005) Depressive symptoms and 24-hour urinary norepinephrine excretion levels in patients with coronary disease: findings from the Heart and Soul Study. American Journal of Psychiatry, 162(11), 2139-2145. Palmen, S., Engelan, H., Hof, P.R., & Schmitz, C. (2004). Neuropathological findings in autism. Brain, 127, 2572-2583. Pavlov, V.A., Wang, H., Czura, C.J., Friedman, S.G., & Tracey, K.J. (2003). The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Molecular Medicine, 9(5-8), 125-134. Polleux, F., & Lauder, J.M. (2004). Toward a developmental neurobiology of autism. Mental Retardation and Developmental Disabilities Research Reviews, 10, 303-317. Shi, L., Fatemi, S.H., Sidwell, R.W. & Patterson, P.H. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. Journal of Neuroscience, 23, 297-302. Shinohe, et al. (2006). Increased serum levels of glutamate in adult patients with autism. Progress in Neuro-Psychopharmacology and Biological Psychiastry, 30, 1472-1477. Yip, J., Soghomonia, J.J., & Blatt, G.J. (2007). Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: Pathophysiological implications. Acta Neuropathology, 113, 559-568. Vojdani, A., Campbell, A.W., Anyanwu, E., Kashanian, A., Bock, K. & Vojdani, E. (2002). Antibodies to neuron-specific antigens in children with autism: Possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Stretoccoccus group A. Journal of Neuroimmunology, 129, 168-177. Vojdani, A., Mumper, E., Granpeesheh, D., Mielke, L., Traver, D., Bock, K., et al. (2008). Low natural killer cell cytotoxic activity in autism: The role of glutathione, IL-2 and IL-15. Journal of Neuroimmunology, 205(1-2), 148-154. Wakefield, A.J., Murch, S.H., Anthony, A., Linnell, J., Casson, D.M., Malik, M., Berelowitz, M., Dhillon, A.P., Thomson, M.A., Valentine, A., Davies, S.E., & Walker-Smith, J.A. (1998). Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet, 351, 637-641. Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J.T., Abrahams, B.S., et al. (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorder. Nature, [Epub ahead of print] Zalcman, S., Gree-Johnson, J.M., Murray, L. et al. (1994). Cytokine-specific central monoamine alterations induced by interleukin-1-2, and -6. Brain Research, 15, 287-290.
علم المناعة العصبية من اضطراب طيف التوحد.
الناقلات العصبية والمؤشرات الحيوية التنبؤية للاستجابة للعلاج تعاطي المخدرات
علم المناعة العصبية من اضطراب طيف التوحد.
معالجة عدم التوازن الغدة الكظرية: مستقبل الغدة الكظرية الصحة
Avipaxin والتحوير من الجهاز المناعي.
الأداة المساعدة السريرية البولية تحليل ناقل عصبي: نظرة عامة.
Daxitrol لا غنى عنه: A أسلوب جديد لضبط الشهوة.
تفاعلات فرط الحساسية وطرق كشفها.
مثيلة: الأساسي لسلامة الجهاز العصبي
A-أسفل أعلى استراتيجية جديدة لمعالجة الاختلالات اللاإرادي.
تحميل PDF

علم المناعة العصبية طيف التوحد اضطراب

ديفيد مارك، MSA؛ كيلي أولسون، PhDa

aNeuroScience، وشركة، 373 شارع 280، أسولا، WI 54020، الولايات المتحدة الأمريكية
عنوان المراسلات إلى: david.marc@neurorelief.com
ملخص

التوحد هو اضطراب في النمو تتميز الشذوذات المناعية والعصبية. وجرى بحث دور السيتوكينات في الفيزيولوجيا المرضية لمرض التوحد مما يدل على العلاقة مع المتغيرة نفاذية حاجز الدم في الدماغ وneuroinflammation لاحق. التوظيف خلوى في الجهاز العصبي المركزي قد يؤدي إلى تغييرها يشير العصبي ومظهر من مظاهر السلوك أعراض التوحد. محصنة بوساطة أحداث أخرى مثل التغييرات في عدد ونشاط الخلايا القاتلة الطبيعية، الضامة، المناعية، والجلوتاثيون يمكن أن تسهم في الخلايا العصبية الإشارات والعصبي الاختلالات المتغيرة. والغرض من هذا الاستعراض هو دراسة العلاقة بين جهاز المناعة وخلل الجهاز العصبي لتحديد المؤشرات الحيوية لاضطراب طيف التوحد. سنبحث فائدة السيتوكينات في الدم ويحلل العصبي البولية والمؤشرات الحيوية لمرض التوحد.


مقدمة

التوحد هو اضطراب النمو المتفشي تتسم بالتطور ضعف التفاعل الاجتماعي والتواصل، وذخيرة مقيد بشكل ملحوظ من الأنشطة والاهتمامات (جمعية الأمريكية للطب النفسي، 1994). المسببات الدقيق لمرض التوحد ما زالت غير معروفة إلى حد كبير، ومع ذلك، فقد ظهرت الكتابات تشير إلى وراثية، العصبية، المناعية، والمساهمات البيئية. العوامل المناعية والبيئية، مثل النظام الغذائي، والعدوى، والاكسيوبيوتك تلعب أدوارا حاسمة في تطور مرض التوحد. (Ivarsson، Bjerre، Vegfors، وAhlfors، 1990؛. يكفيلد وآخرون، 1998؛ Edelson وكانتور، 2002؛ فاطمي وآخرون، 2002؛. Kibersti وروبرتس، 2002). تشوهات في وظيفة الأنزيمية (فاطمي وآخرون، 2002A)، الأجسام المضادة للبروتينات الدماغ (Vojdani وآخرون، 2002)، والتهابات الأمهات أثناء الحمل (شي وآخرون، 2003) وقد ورد في السكان التوحد. بالإضافة إلى ذلك، التغيرات المرضية في الجينات المسؤولة في الزخرفة من الجهاز العصبي المركزي، المسارات البيوكيميائية، وقد لوحظ تطور التشعبات ونقاط الاشتباك العصبي، والجينات المرتبطة مع نظام المناعة في هذه الفئة من السكان (Burber وارن، 1998؛ Palmen، Engeland، هوف وشميتز، 2004؛ Polleux ولودر، 2004؛ كوهين وآخرون، 2005؛ كراولي، 2007؛ Glessner وآخرون، 2009؛. انغ وآخرون، 2009).

ومن المثير للاهتمام، وهي هيئة الناشئة من الأدلة تتزايد بشأن الصلة بين الوظيفة المناعية غير طبيعي وضعف الجهاز العصبي الذين يعانون من اضطرابات طيف التوحد. في الأوقات الحرجة للتنمية الرضع، قد يؤدي ديسريغولاتيون المناعة في الإفراج عن الجزيئات المناعية، مثل كيموكينات والسيتوكينات، مما يؤدي إلى تطوير الخلايا العصبية المعدلة وظيفة العصبية (Cohly وPanja، 2005).

كيموكينات والسيتوكينات هي بروتينات التي تدير الاتجار الخلايا المناعية وترتيب الخلوي للأجهزة المناعة وتحديد الاستجابات المناعية المناسبة (Borish وSteinke، 2003). ويمكن نقل السيتوكينات و / أو تصنيعه في الجهاز العصبي المركزي (CNS) وبالتالي إقامة اتصال بين الخلايا المناعية والخلايا العصبية الطرفية CNS (دان، 2006). والغرض من هذا الاستعراض هو تحديد التشوهات العصبية والمناعية الموجودة في الأشخاص الذين يعانون من مرض التوحد. وعلاوة على ذلك، فإنه أصبح من الواضح جدا أن اختبار العلامات البيولوجية neuroimmune لمرض التوحد يمكن التعرف على هذه التشوهات وضمان فعالية العلاجية.


السيتوكينات والعصبي

السيتوكينات الصادرة عن الخلايا المناعية، وخاصة انترلوكين 1 (IL-1) ونخر الورم عامل α (TNF-α)، والتواصل مع الجهاز العصبي المركزي للتأثير على النشاط العصبي وتعديل السلوكيات، والإفراج عن هرمون، و "طبيعية" وظيفة اللاإرادي (دن ، 2006). يمكن السيتوكينات يدخل الدماغ عن طريق آليات مختلفة بما في ذلك النقل النشط أو الدخول المباشر عبر حاجز الدم في الدماغ خطر. وقد تم توثيق آليات النقل النشطة التي تنطوي على نظام تشبع لIL-1 و TNF-α (دن، 1992؛ جوتيريز، البنوك، وKastin، 1993؛ جوتيريز، البنوك، Kastin، 1994). بالإضافة إلى ذلك، وجد ماير وزملاؤه (1998) أن السيتوكينات يمكن أن تدخل مباشرة على الجهاز العصبي المركزي في مناطق محيطة بالبطينات، في الغالب الباحة المنخفضة، حيث حاجز الدم في الدماغ هو أقل واقية (بافلوف وآخرون، 2003). وتشمل المناطق محيطة بالبطينات الدخول الأخرى خلوى المحتملين الغدة الصنوبرية، الجهاز تحت القبو، organum الوعائية من الانتهائي الصفيحة، الضفيرة المشيمية، سماحة متوسط، جهاز subcommissural، والنخامية الخلفية (Ganong، 2000).

عند الدخول إلى الجهاز العصبي المركزي، السيتوكينات تعزيز الإشارات التنظيمية في الدماغ، من خلال زيادة من الغدة النخامية، الغدة الكظرية (HPA) النشاط محور والعصب الحائر efferents، والتي يمكن تعديل الوضع المناعي الطرفية. تعزيز HPA الإفراج محور الادرينالين والكورتيزول يمكن أن تقلل من الإفراج عن السيتوكينات الموالية للالتهابات من الضامة في محيط (بافلوف وآخرون، 2003). بالإضافة إلى ذلك، يمكن لزيادة النشاط صادر المبهم تؤدي إلى الإفراج الأستيل كولين من النهايات العصبية الطرفية الحركية، والحد من إطلاق السيتوكينات الموالية للالتهابات (بافلوف وآخرون، 2003). ولذلك فمن الواضح أن نظام المناعة والجهاز العصبي التواصل للحفاظ على التوازن، ولكن في ظل التحديات المفرطة المناعية يمكن إحداث تغييرات في الإشارات العصبية تتطور.

وقد أظهرت الدراسات أن تفعيل الطرفية السيتوكينات يمكن أن يؤدي إلى إطلاق الجهاز العصبي المركزي من مختلف الناقلات العصبية. على وجه التحديد، IL-1 الإدارة قد تعزز الإفراج CNS من norepineprhine، السيروتونين، الدوبامين، الغلوتامات، وجاما أمينو زبدي حمض (GABA) (دن، 1992؛ Zalcman وآخرون، 1994؛. Casamenti وآخرون، 1999؛. لوك وآخرون، 1999؛. هوانغ وO'Banion، 1998). مع تعزيز مبيعاتها من هذه الناقلات العصبية، تغييرات عصبية وسلوكية هامة ارشح. وقد أظهرت الأبحاث مدى التحديات المناعية يمكن أن يغير العصبي مما يؤدي إلى تغيرات سلوكية واضطرابات نفسية (قرنفل وريميك، 2000). على سبيل المثال، وقد ارتبطت مستويات مرتفعة من انترلوكين 6 (IL-6) مع أعراض الاكتئاب (بوب وآخرون، 2009).

في التوحد، تغيير في وظيفة الجهاز المناعي يمكن أن تسهم في الإشارات العصبية ضعف. آلية ممكنة تساهم في ضعف الخلايا العصبية في الدماغ التوحد هي نقل المواد الضارة عبر حاجز الدم في الدماغ إلى الجهاز العصبي المركزي مما يؤدي إلى أمراض المناعة الذاتية. وقد أظهرت الدراسات كيف السيتوكينات، كيموكينات، المناعية، والخلايا القاتلة الطبيعية تعزز التوظيف من المواد الكيميائية الضارة في أدمغة الأفراد الذين يعانون من التوحد، وكذلك تساهم في المناعة الذاتية (أشووود وآخرون، 2006). كيموكينات Proinflammatory، مثل الوحيدات الكيميائي البروتين 1 (MCP-1) والغدة الصعترية التنظيم تفعيل chemokine (TARC)، جنبا إلى جنب مع السيتوكينات، مثل TNF-α، كانت مرتفعة باستمرار في أدمغة الأفراد المصابين بالتوحد (Cohly وPanja، 2005). نقل أو توليف السيتوكينات في الدماغ يمكن أن تسهم في neuroinflammation والاختلالات العصبي الممكنة (Cohly وPanja، 2005). وعلاوة على ذلك، وجد أشووود وزملاؤه (2008) أن انخفاض مستويات خلوى تغييري، وتحويل عامل النمو β1 (TGF-β1)، في الأطفال الذين يعانون من التوحد ساهمت في التقلبات من السلوكيات التكيفية وpredisposal للاستجابات المناعة الذاتية. المناعة الذاتية يمكن أن يكون ضارا الإشارات العصبية الطبيعية، ويؤدي إلى الانحرافات السلوكية كبيرة (أشووود وآخرون، 2006). Vojdani وزملاؤه (2008) عن انخفاض في حركة الخلايا الطبيعية القاتلة في الأطفال المصابين بالتوحد لديهم مستويات منخفضة من داخل الخلايا الجلوتاثيون، IL-2، وIL-15. ارتبط انخفاض نشاط الخلايا القاتلة الطبيعية مع المناعة الذاتية من خلال تغيير إنتاج السيتوكينات (جوهانسون وآخرون، 2005). وأخيرا، أظهرت Entrom وزملاؤه (2009) مرتفعة المناعي G4 (IgG4) الإنتاج في الأطفال الذين يعانون من التوحد. وقد تم تحديد الأجسام المضادة مفتش مرتفعة ضد بروتينات الدماغ محددة في منطقة ما تحت المهاد والمهاد من الأطفال الذين يعانون من التوحد، مما يشير مرة أخرى المناعة الذاتية (Cabanlit وآخرون، 2007).

على الرغم من أن الدراسات محدودة على التوحد والمناعة الذاتية موجودة، فقد تم الافتراض بأن النقل الزائدة وتوليف كيموكينات proinflammatory، السيتوكينات، والمناعية من المحيط إلى الجهاز العصبي المركزي يساهم في وضع استجابات المناعة الذاتية (Cohly وPanja، 2005). قد يؤدي المناعة الذاتية لdysregulated الإشارات العصبية تسبب مظاهر سلوكية أعراض التوحد. لذلك، وتقييم وظيفة الجهاز المناعي والجهاز العصبي يمكن أن توفر الأهداف الحيوية لعلاج المرضى الذين يعانون من هذه الانحرافات السلوكية.


الجهاز العصبي المؤشرات الحيوية والتوحد

المؤشرات الحيوية هي مواد تستخدم كمؤشرات لدولة البيولوجية. وقد كشفت الأبحاث فائدة سريرية من الناقلات العصبية البولية والمؤشرات الحيوية عملية لاقترانه العصبي (Kusaga وآخرون، 2002؛. هيوز وآخرون، 2004). تحليل البول هو الناقل العصبي، طريقة مبتكرة الغازية الحد الأدنى لتقييم مستويات الناقل العصبي الطرفية، ولها مجموعة واسعة من البيانات لدعم فائدته في الممارسة السريرية. في عام 1950، كشفت النقاب عن علاقة بين مستويات الكاتيكولامينات البولية وأعراض نفسية، مثل الاكتئاب والقلق (Bergsman 1959؛ كارلسون وآخرون، 1959). درست البحوث التي أجريت مؤخرا في جدوى التحليل العصبي البولية لتصنيف مجموعات فرعية من الاكتئاب والقلق، وتحديد التدخلات الدوائية (ق) (هيوز وآخرون، 2004؛. اوتي وآخرون، 2005). بالرغم من ذلك، يمكن أن تزيد من تحليل البول العصبي استخدامها لتقييم اضطراب نقص الانتباه فرط النشاط، (ADHD). الموضوعات مع ADHD يميلون إلى انخفضت البولية مستويات مثبطات الناقل العصبي (على وجه التحديد، بيتا phenylethylamine (PEA)) يمكن أن تضعف المزاج والانتباه (Kusaga وآخرون، 2002). ما هو أكثر من ذلك، انخفضت مستويات بيتا PEA يمكن أن تسهم في أعراض عدم الانتباه (بيري، 2004).
عموما، تقييم عصبي البول يمكن أن تكون أداة مفيدة في أي الممارسة السريرية، وخاصة أولئك الذين يديرون الاضطرابات النفسية. تحليل البول العصبي يمكن تحديد التشوهات العصبي التي قد تسهم في التغيرات السلوكية، وبالتالي تسمح اختيار العلاج الأنسب (كاهانا، 2009).
في التوحد، وقد تم استخدام التحليل العصبي البول لفحص شذوذ البيوكيميائية. على هذا النحو، كان السيروتونين الناقل العصبي البولية البولية الأساسي تقييمها في الأفراد الذين يعانون من التوحد. وقد تم ربط خلل في السيروتونين البولية الاضطرابات المناعية. وجدت دراسة حديثة ارتفاعات مستمرة في عدد الخلايا البدينة، جنبا إلى جنب مع مستويات مرتفعة من السيروتونين البول، في المرضى الذين يعانون من التوحد (كاستيلاني وآخرون، 2009). المواد الغذائية، يمكن أن الإجهاد، أو الفيروسات تحفيز الخلايا البدينة في الأمعاء وأدمغة الأطفال الصغار. مترجمة وتنشيط جهاز المناعة الجهازية يمكن أن يؤدي إلى تعزيز خلوى وإطلاق السيروتونين من الخلايا البدينة واضطراب في بطانة الأمعاء وحاجز الدم في المخ مما يؤدي غيرت الإشارات العصبية (كاستيلاني وآخرون، 2009). كما ذكر سابقا، يسمح حاجز الدم في الدماغ خطر دخول المواد الضارة في الدماغ وتساهم في neuroinflammation. CNS تشوهات العصبي قد تنجم عن neuroinflammation مما يؤدي إلى تغيرات سلوكية.
كما تم تحديدها في الأفراد الذين يعانون من التوحد، رفعت مستويات الصوديوم المحيطية قد يؤدي أيضا من حاجز للخطر الدم في الدماغ (مورينو فوينمايور، وآخرون، 1996، ييب، 2007). ويعزى ارتفاع الصوديوم في البلازما إلى انخفاض مستويات rate- في الحد من انزيم كربوكسيل حمض الجلوتاميك (GAD) في الأفراد الذين يعانون من التوحد (Shinohe، 2006، ييب، 2007). على وجه التحديد، ذكرت فاطمي وزملاؤه (2002A) وييب وآخرون (2007) انخفاض عدد GAD 65 و 67 البروتينات في الخلايا العصبية في مخيخات التوحد. وGAD انخفضت قد يكون راجعا إلى الأجسام المضادة المحددة لإدماج المرأة في التنمية، والتي تم الكشف عنها في مختلف الاضطرابات العصبية (مانتو وآخرون، 2007). هذه الأجسام المضادة تهاجم الجسم نفسه الخلايا والأنسجة، و / أو أجهزة، مما يسبب التهاب وتلف الأنسجة. لأن GAD يحول الغلوتامات لجاما immunobutyric حمض (GABA)، فإن الانخفاض في معدلات هذا الإنزيم يسبب زيادة لاحقة في مستويات الصوديوم (ييب، 2007). يمكن سريريا مستويات عالية الغلوتامات يكون excitotoxic المواد ويمكن أن تؤدي إلى تنكس عصبي والخلل المعرفي (ها وآخرون، 2009).
وقد أثبتت الدراسات أن القياسات البيوكيميائية معينة، كما هو الحال في البلازما مستويات الأحماض الأمينية، وارتقى في الأطفال الذين يعانون من التوحد بالمقارنة مع الضوابط. أظهر الأطفال الذين يعانون من التوحد مستويات مرتفعة من الصوديوم في البلازما وحمض الأسبارتيك جنبا إلى جنب مع التورين، الفنيل الأنين، الأسباراجين، التيروزين، ألانين، ويسين (مورينو فوينمايور، بورجاس، اريتا، فاليرا، وسوكورو-Candanoza، 1996؛ ألدريد، مور، فيتزجيرالد، و ارنج، 2003). قد يكون سبب هذه التغيرات الأحماض الأمينية التي مأمن الأحداث بوساطة، وفيتامين القصور، وتعديلات في النقل الناقلات العصبيه، أو اضطراب التمثيل الغذائي.
وكذلك كشفت دراسات التصوير تشوهات في الأفراد الذين يعانون من التوحد، والتي تشير إلى أن نمو الدماغ غير طبيعي في العديد من الهياكل الدماغ الكبرى مثل المخيخ، قشرة الدماغ، اللوزة، الحصين، الإحضار collosum، العقد القاعدية، وجذع الدماغ يمكن أن تسهم في الانحرافات السلوكية في مرض التوحد (Courchesne وآخرون، 2001؛. أكوستا واللؤلؤ، 2004). وعلاوة على ذلك، هو أنه يبين البحث أن انخفاض حجم المخيخ في الدماغ التوحد بسبب انخفاض أعداد الخلايا العصبية تقع في المخيخ. غيرت السكان الخلية العصبية يمكن أن تؤدي في النهاية إلى اضطراب وضعف التنسيق الحركي (Palmen، Engeland، هوف، وشميتز، 2004). مجتمعة، يمكن أن نمو الدماغ غير طبيعي أن يكون عامل آخر يمكن أن تسهم في الاختلالات العصبي الطرفية ومظاهر السلوك الأعراض.
ما هو أكثر من ذلك، التطور العصبي الشاذ وظيفة قد تنجم عن تجنيد خلوى في الجهاز العصبي المركزي وبالتالي الأحماض الأمينية والعصبي التعديلات (Cohly وPanja، 2005). التغيرات في مستويات الأحماض الأمينية قد يؤدي إلى ارتفاع أو عدم كفاية النشاط العصبي، وبالتالي يمكن أن تتداخل مع التطور الطبيعي المعرفية (ألدريد، وآخرون، 2003). خلال مرحلة الطفولة والمراهقة، وصيانة المثلى الإشارات العصبية ضرورية لضمان التطور الطبيعي للعمليات الإنتباه والذاكرة والوظائف الإدراكية العامة، يضفي مصداقية على أهمية التدخل المبكر من خلال التحليل المختبري من الناقلات العصبية والسيتوكينات.

استنتاج

جهاز المناعة، ونشاط الجهاز العصبي ويجب أن ينظر وفحص كنظام واحد يعمل في نفس الوقت. ومن الثابت أن التشوهات العصبية والمناعية موجودة في الأفراد الذين يعانون من التوحد، ومع ذلك، فقد تم مؤخرا وأكد على العلاقة بين وظيفة العصبية والمناعية. المواد الغذائية، يمكن أن الإجهاد، والفيروسات تنشيط الخلايا المناعية في محيط ويؤدي إلى اضطرابات الجهاز العصبي المركزي. وهذا قد يؤدي إلى التهاب في الدماغ، وفي نهاية المطاف إلى تغيير السلوك (كاستيلاني وآخرون، 2009). يجب أن ممارسي الرعاية الصحية على فهم وتقييم حالة الجهاز العصبي جنبا إلى جنب مع نظام المناعة لأفضل تحسين التدخل العلاجي (ق). من خلال تطوير الاختبارات المعملية مبتكرة لتحليل الناقلات العصبية والسيتوكينات، ويمكن الحصول على معلومات شاملة لتحديد التشوهات العصبية والمناعية. ويمكن لهذه التدابير الكيميائية الحيوية بمثابة المؤشرات الحيوية للأعراض السريرية، فضلا عن توفير التوجيه كبير لاختيار العلاجية بغية إعادة التوازن الفسيولوجي والاستفادة الصحة العامة والرفاه.

المراجع

أكوستا، M.T.، واللؤلؤ، P.L. (2004). بيانات التصوير في التوحد: من الهيكل لعطل. حلقات دراسية في طب الأطفال طب الأعصاب، 11، 205-213.
ألدريد، S.، مور، KM، فيتزجيرالد، M.، وارنج، RH (2003). البلازما مستويات حمض الأميني في الأطفال المصابين بالتوحد وأسرهم. مجلة للتوحد واضطرابات النمو، 33، 93-97.
جمعية الأمريكية للطب النفسي. الدليل التشخيصي والإحصائي للاضطرابات المعادن. DSM-IV. الطبعة 4. واشنطن، DC: الرابطة الأمريكية للطب النفسي، 1994.
أشووود، P.، Enstrom، A.، Krakowiak، P.، هيرتز Picciotto، I.، هانسن، RL، Croen، LA، وآخرون. (2008). انخفض عامل النمو المحول beta1 في التوحد: ارتباط محتمل بين التقلبات المناعة وضعف في النتائج السلوكية السريرية. مجلة علم المناعة العصبية، 204 (1-2)، 149-153.
أشووود، P.، ويليس، S.، وفان دي المياه، J. (2006). الاستجابة المناعية في مرض التوحد: جبهة جديدة لأبحاث مرض التوحد. مجلة علم الأحياء خلايا الدم البيضاء، 80، 1-15.
Bergsman، A. (1959) وإفراز البول من الأدرينالين والنورادرينالين في بعض الأمراض العقلية؛ دراسة سريرية وتجريبية. اكتا psychiatrica Scandinavica. Supplementum، 133، 1-107.
التوت، MD (2004A) الثدييات العصبي الأمينات تتبع نظام المركزية. الأمفيتامينات الدوائية، neuromodulators فيزيولوجي. مجلة الكيمياء العصبية، و 90 (2)، 257-271.
بوب، P.، Raboch، J.، مايس، M.، Susta، M.، Pavlat، J.، Jasova، D. آخرون. (2009). الاكتئاب والصدمة وانترلوكين 6. مجلة للاضطرابات العاطفية، [الإليكتروني (Epub) قبل الطباعة].
Borish، L.C.، وSteinke، J.W. (2003). 2. السيتوكينات و chemokines. مجلة الحساسية والمناعة السريرية، 111 (2)، S460، S475.
برغر، قانون الجمهورية، وارن، R.P. (1998). أساس مستمنع محتمل لمرض التوحد. التخلف العقلي والإعاقات التنموية البحوث تعليقات، 4، 137-141.
Cabanlit، M.، والوصايا، S.، جوينز، P.، أشووود، P.، وفان دي المياه، J. (2007). الأجسام المضادة الدماغ محددة في البلازما من الموضوعات مع اضطراب طيف التوحد. أكاديمية نيويورك للعلوم، 1107، 92-103.
كارلسون، A.، راسموسن، EB، وKristjansen، P. (1959) وإفراز البول من الأدرينالين والنورادرينالين من قبل المرضى الاكتئاب خلال فترة العلاج إيبرونيازيد. مجلة الكيمياء العصبية، 4، 321-324.
Casamenti، F.، بروسبيري، C.، سكالي، C.، وآخرون. (1999). انترلوكين 1β ينشط الخلايا الدبقية الدماغ الأمامي ويزيد من إنتاج أكسيد النيتريك والغلوتامات القشرية والإفراج GABA في الجسم الحي: الآثار المترتبة على مرض الزهايمر. علم الأعصاب، 91، 831-842.
كاستيلاني، ML، كونتي، CM، Kempuraj، DJ، ساليني، V.، Vecchiet، J.، & تيتي، S. (2009). التوحد والمناعة: دراسة إعادة النظر. المجلة الدولية للالباثولوجيا المناعية والصيدلة، 22 (1)، 15-19.
كوهين، D.، Pichard، N.، Tordjman، S.، باومان، C.، Burglen، L.، Excoffier، E.، لازار، G.، مازيت، P.، Pinquier، C.، Verloes، A.، وهيرون، D. (2005). اضطرابات معينة الوراثية ومرض التوحد: مساهمة السريرية نحو التعرف عليهم. مجلة للتوحد واضطرابات النمو، 35، 103-116.
Cohly، HH، وPanja، A. (2005) النتائج المناعية في مرض التوحد. المجلة الدولية للبيولوجيا الأعصاب، 71، 317-341.
Courchesne، E.، كارنس، CM، ديفيس، HR، Ziccardi، R.، كاربر، RA، Tigue، ZD، Chisum، HJ، موسى، P.، بيرس، K.، يا رب، C.، وآخرون. (2001). أنماط نمو الدماغ غير عادية في وقت مبكر من الحياة في المرضى الذين يعانون من اضطراب التوحد: دراسة التصوير بالرنين المغناطيسي. الأعصاب، 57، 245-254.
كراولي، J.N. (2007). اختبار الفرضيات حول مرض التوحد. العلوم، 318، 56-57.
دن، A.J. (1992). تفعيل الناجم عن الذيفان الداخلي الكاتيكولامينات الدماغي والتمثيل الغذائي السيروتونين: مقارنة مع انترلوكين 1. مجلة علم الصيدلة والعلاج التجريبي، 261، 964-969.
دن، A.J. (2006). آثار السيتوكينات والتهابات في الكيمياء العصبية في الدماغ. السريرية علم الأعصاب البحوث، 6 (2/1)، 52-68.
Edelson، S.B.، وكانتور، D.S. (2000). المسببات أعصاب من اضطراب طيف التوحد: دراسة تنسخي. علم السموم والصحة الصناعية، 16، 239-247.
خلفا، M.، كوروساوا، M.، Lundeberg، T.، وآخرون. (1998). تفعيل afferents العصب الحائر بعد الحقن في الوريد من انترلوكين 1β: دور البروستاجلاندين الذاتية. مجلة علم الأعصاب، 18، 9471-9479.
Enstrom، A.، Krakowiak، P.، Onore، C.، عيد الفصح، IN، هيرتز Picciotto، I.، هانسن، RL وآخرون. (2009). زيادة مستويات IgG4 في الأطفال الذين يعانون من اضطراب التوحد. الدماغ والسلوك والحصانة، 23 (3)، 389-395.
فاطمي، SH، إيرل، J.، Kanodia، R.، كيست، D.، Emamian، ES، باترسون، PH، شي، L.، وسيدويل، R. (2002). العدوى الفيروسية قبل الولادة ويؤدي إلى ضمور الخلايا الهرمية وضخامة الرأس في مرحلة البلوغ: الآثار المترتبة على نشأة التوحد وانفصام الشخصية. الخلوية والجزيئية بيولوجيا الأعصاب، 22، 25-33.
فاطمي، وآخرون. (2002A). حمض الجلوتاميك decarbosylase 65 ويتم تخفيض 67 كيلو دالتون البروتينات في الجدارية التوحد والقشور المخيخ. الطب النفسي البيولوجي، 52، 805-810.
Ganong، W.F. (2000). أجهزة محيطة بالبطينات: تعريف ودورها في تنظيم الغدد الصماء وظيفة اللاإرادي. السريرية والتجريبية الصيدلة وعلم وظائف الأعضاء، 27 (5-6)، 422-427.
Glessner، JT وانغ، K.، كاي، G.، Korvatska، O.، كيم، CE، الخشب، S.، وآخرون. (2009). التوحد الجينوم على نطاق التباين في عدد النسخ يكشف بتحول والجينات العصبية. الطبيعة، [قبل الإليكتروني (Epub) من طباعة].
Goehler، L.E.، Gaykema، R.P.، نجوين، K.T. وآخرون. (1999). انترلوكين 1β في الخلايا المناعية للعصب المبهم في البطن: ويربط بين جهاز المناعة والجهاز العصبي؟ مجلة علم الأعصاب، 19، 2799-2806.
جوتيريز، على سبيل المثال، البنوك، W.A.، وKastin، A.J. (1993). ويتم نقل الورم الفئران عامل نخر ألفا من الدم الى الدماغ في الماوس. مجلة علم المناعة العصبية، 47، 169-176.
جوتيريز، على سبيل المثال، البنوك، W.A.، وKastin، A.J. (1994). المنقولة عن طريق الدم انترلوكين 1 مستقبلات يعبر حاجز الدم في الدماغ. مجلة علم المناعة العصبية، 55، 153-160.
ها، JS، الليم CS، Maeng، JS، كوون، KS، وبارك، SS (2009). سمية الغلوتامات المزمنة في الماوس ثقافة العصبية القشرية. أبحاث الدماغ، [الإليكتروني (Epub) قبل الطباعة].
هانسن، M.K.، تيشي، P.، تشن، Z. وآخرون. (1998). كتل قطع المبهم تحريض انترلوكين 1β (IL-1β) مرنا في دماغ الفئران استجابة لالنظامية IL-1β. مجلة علم الأعصاب، 18، 2247-2253.
هوانغ، T.L.، وO'Banion، M.K. (1998). انترلوكين 1β وعامل نخر الورم ألفا قمع ديكساميثازون تحريض مخلقة الجلوتامين في الخلايا النجمية الماوس الأولية. مجلة علم الأعصاب، 71، 1436-1442.
هيوز، JW، واتكينز، L.، بلومنتال، JA، كون، C.، وشيروود، ترتبط A. (2004) الاكتئاب والقلق أعراض زيادة على مدار 24 ساعة بافراز البولية إفراز بين النساء في منتصف العمر صحية. مجلة البحوث النفسي، 57 (4)، 353-358.
Iversson، SA، Bjerre، L.، Vegfors، P.، وAhlfors، K. (1990). التوحد واحدة من عدة تشوهات في اثنين من الأطفال الذين يعانون من عدوى الفيروس المضخم للخلايا الخلقية. Neuropediatrics، 21، 102-103.
يوهانسون، S.، بيرغ، L.، قاعة، H.، & Hoglund، P. (2005). الخلايا القاتلة الطبيعية: اللاعبين الهارب في المناعة الذاتية. اتجاهات في علم المناعة، 26، 613-618.
كاهانا، A. (2009). البولية تحليل ناقل عصبي والعلامات البيولوجية للاضطرابات النفسية. تاونسند رسالة، 1، 70-72.
Kibersti، P.، وروبرتس، L. (2002). انها ليست مجرد الجينات. العلوم، 296، 685.
قرنفل، Z.، وريميك، D. (2000). السيتوكينات والدماغ: الآثار المترتبة على الطب النفسي السريري. المجلة الأمريكية للطب النفسي، 158 (7)، 1163-1164.
Kusaga، A.، ياماشيتا، Y.، Koeda، T.، Hiratani، M.، كانيكو، M.، يامادا، S.، وMatsuishi، T. (2002) زيادة البول phenylethylamine بعد العلاج الميثيلفينيديت في الأطفال الذين يعانون من ADHD. دورية حوليات طب الاعصاب، 52 (3)، 372-374.
أونلي، S.، Bluthé، R.M.، كينت، S. وآخرون. (1995). Subdiphragmatic كتل قطع المبهم تحريض ايل-1 مرنا في الفئران الدماغ استجابة لLPS الطرفية. المجلة الأمريكية لعلم وظائف الأعضاء، 268، R1327-R1331.
لوك، W.P، تشانغ، Y.، أبيض، T.D. وآخرون. (1999). الأدينوزين. وسيط انترلوكين 1β ؟؟ hippocampol الناجم عن تثبيط متشابك. مجلة علم الأعصاب، 19، 4238-4244.
مانتو، MU، Laute، MA، Aguera، M.، Rogemond، V.، باندولفو، M.، وHONNORAT، J. (2007). الآثار المضادة للالجلوتاميك الأجسام المضادة كربوكسيل حمض المرتبطة بالأمراض العصبية. دورية حوليات طب الاعصاب، 61 (6)، 544-551.
ماير، وس. ف.، Goehler، L.E.، Fleshner، M. وآخرون. (1998). دور العصب المبهم في الاتصالات خلوى إلى الدماغ. حوليات أكاديمية نيويورك للعلوم، 840، 289-300.
مورينو فوينمايور، H.، بورجاس، L.، اريتا، A.، فاليرا، V.، وسوكورو-Candanoza، L. (1996). البلازما الأحماض الأمينية مثير في التوحد. مجلة التحقيقات السريرية، 37 (2)، 113-128.
أوتي، C.، Neylan، TC، موقد فخار، SS، سمراء، WS، وWhooley، MA (2005) الأعراض الاكتئابية وعلى مدار 24 ساعة البولية مستويات إفراز النورادرينالين في المرضى الذين يعانون من مرض الشريان التاجي: النتائج من القلب والروح الدراسة. المجلة الأمريكية للطب النفسي، 162 (11)، 2139-2145.
Palmen، S.، Engelan، H.، هوف، PR، وشميتز، C. (2004). النتائج عصبية مرضية في التوحد. الدماغ، 127، 2572-2583.
بافلوف، VA، وانغ، H.، Czura، CJ، فريدمان، SG، وتريسي، KJ (2003). والكوليني مسار المضادة للالتهابات: الحلقة المفقودة في neuroimmunomodulation. الطب الجزيئي، 9 (5-8)، 125-134.
Polleux، F.، ولودر ج.م. (2004). نحو علم الأعصاب التنموي من مرض التوحد. التخلف العقلي والإعاقات التنموية البحوث تعليقات، 10، 303-317.
شي، L.، فاطمي، SH، سيدويل، RW & باترسون، PH (2003). أسباب الإصابة بالأنفلونزا الأمهات تميزت التغيرات السلوكية والدوائية في النسل. مجلة علم الأعصاب، 23، 297-302.
Shinohe، وآخرون. (2006). زيادة مستويات المصل من الغلوتامات في المرضى البالغين المصابين بالتوحد. التقدم في علم الادوية النفسية والعصبية البيولوجية Psychiastry، 30، 1472-1477.
ييب، J.، Soghomonia، J.J.، وبلات، G.J. (2007). انخفاض مستويات GAD67 مرنا في الخلايا العصبية للدماغ في التوحد: الآثار المرضية في جسم المريض. اكتا أمراض الأعصاب، 113، 559-568.
Vojdani، A.، كامبل، AW، أنيانوو، E.، Kashanian، A.، بوك، K. & Vojdani، E. (2002). الأجسام المضادة لمستضدات الخلايا العصبية الخاصة في الأطفال الذين يعانون من التوحد: ممكن عبر رد فعل مع البروتينات دماغي المنشأ من الحليب، الكلاميديا ​​الرئوية ومجموعة Stretoccoccus A. مجلة علم المناعة العصبية، 129، 168-177.
Vojdani، A.، Mumper، E.، Granpeesheh، D.، Mielke، L.، ترافر، D.، بوك، K.، وآخرون. (2008). انخفاض الخلايا الطبيعية القاتلة النشاط السامة للخلايا في التوحد: دور الجلوتاثيون، IL-2 و IL-15. مجلة علم المناعة العصبية، 205 (1-2)، 148-154.
ويكفيلد، AJ، Murch، SH، أنتوني، A.، لينيل، J.، كاسون، DM، مالك، M.، Berelowitz، M.، ديلون، AP، طومسون، MA، عيد الحب، A.، ديفيس، SE، و ووكر سميث، JA (1998). فائفي-اللمفاوية عقيدية تضخم والتهاب القولون غير محددة، واضطراب النمو المتفشي في الأطفال. انسيت، 351، 637-641.
وانغ، K.، تشانغ، H.، ما، D.، Bucan، M.، Glessner، JT، آبراهامز، BS، وآخرون. (2009). المتغيرات الجينية المشتركة على 5p14.1 المنتسبين الذين يعانون من اضطراب طيف التوحد. الطبيعة، [قبل الإليكتروني (Epub) من طباعة]
Zalcman، S.، GREE جونسون، JM، موراي، L. وآخرون. (1994). التعديلات مونوامين المركزي خلوى محددة الناجم عن انترلوكين 1-2، و-6. أبحاث الدماغ، 15، 287-290.

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس
  #6  
قديم 07-30-2015, 12:32 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي

 

Did you mean: Neuroimmunology of Autism Spectrum Disorder. Neurotransmitters as predictive biomarkers of responsiveness to substance abuse treatment Neuroimmunology of Autism Spectrum Disorder. Addressing Adrenal Imbalance: The Future of Adrenal Health Avipaxin and Modulation of the Immune System. The Clinical Utility of Urinary Neurotransmitter Analysis: An Overview. Daxitrol Essential: A Novel Approach for Controlling Cravings. Hypersensitivity Reactions and Methods of Detection. Methylation: Fundamental to a Healthy Nervous System A Novel Top-down Strategy For Addressing Autonomic Imbalances. Download PDF NEUROIMMUNOLOGY OF AUTISM SPECTRUM DISORDER David Marc, MSa; Kelly Olson, PhD NeuroScience, Inc., 373 280th St., Osceola, WI 54020, United States address correspondence to: david.marc@neurorelief.com Abstract Autism is a developmental disorder characterized by immunological and neurological abnormalities. The role of cytokines in the pathophysiology of autism has been researched suggesting a relationship with altered blood-brain barrier permeability and subsequent neuroinflammation. Cytokine recruitment to the CNS may result in altered neurotransmitter signaling and the behavioral manifestation of autism symptoms. Other immune mediated events such as changes in the number and activity of natural killer cells, macrophages, immunoglobulins, and glutathione may contribute to altered neuronal signaling and neurotransmitter imbalances. The purpose of this overview is to examine the relationship between immune system and nervous system dysfunction to determine biomarkers for autism spectrum disorder. We will explore the utility of serum cytokines and urinary neurotransmitter analyses as biomarkers for autism. Introduction Autism is a pervasive developmental disorder characterized by impaired development of social interaction and communication, and a markedly restricted repertoire of activities and interests (American Psychiatric Association, 1994). The exact etiology of autism remains largely unknown, however, literature has emerged to suggest genetic, neurological, immunological, and environmental contributions. Immunological and environmental factors, such as diet, infection, and xenobiotics play critical roles in the development of autism. (Ivarsson, Bjerre, Vegfors, and Ahlfors, 1990; Wakefield et al., 1998; Edelson and Cantor, 2002; Fatemi et al., 2002; Kibersti and Roberts, 2002). Abnormalities in enzymatic function (Fatemi et al., 2002a), autoantibodies to brain proteins (Vojdani et al., 2002), and maternal infections during pregnancy (Shi et al., 2003) have been indicated in the autism population. Additionally, pathological alterations in genes involved in the patterning of the central nervous system, biochemical pathways, development of dendrites and synapses, and genes associated with the immune system have been observed in this population (Burber and Warren, 1998; Palmen, Engeland, Hof, and Schmitz, 2004; Polleux and Lauder, 2004; Cohen et al., 2005; Crawley, 2007; Glessner et al., 2009; Wang et al., 2009). Interestingly, an emerging body of evidence is growing concerning the link between abnormal immune function and neurological dysfunction with autism spectrum disorders. At critical times of infantile development, immune dysregulation may result in the release of immunomodulatory molecules, such as chemokines and cytokines, leading to altered neuronal development and neural function (Cohly & Panja, 2005). Chemokines and cytokines are proteins that manage immune cell trafficking and cellular arrangement of immune organs and determine appropriate immune responses (Borish & Steinke, 2003). Cytokines can be transported to and/or synthesized in the central nervous system (CNS) thereby establishing communication between peripheral immune cells and CNS neurons (Dunn, 2006). The purpose of this overview is to identify neurological and immunological abnormalities that exist in individuals with autism. Further, it will become critically apparent that neuroimmune biomarker testing for autism can identify these abnormalities and ensure therapeutic effectiveness. Cytokines and Neurotransmission Cytokines released by immune cells, particularly interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α), communicate with the CNS to affect neural activity and modify behaviors, hormone release, and "normal" autonomic function (Dunn, 2006). Cytokines can enter the brain by various mechanisms including active transport or direct entry through a compromised blood-brain barrier. Active transport mechanisms that involve a saturable system have been documented for IL-1 and TNF-α (Dunn, 1992; Gutierrez, Banks, and Kastin, 1993; Gutierrez, Banks, Kastin, 1994). Additionally, Maier and colleagues (1998) found that cytokines may directly enter the central nervous system at circumventricular regions, predominantly the area postrema, where the blood brain barrier is less protective (Pavlov et al., 2003). Other circumventricular regions of potential cytokine entry include the pineal gland, subfornical organ, organum vasculosum of the lamina terminalis, choroid plexus, median eminence, subcommissural organ, and posterior pituitary (Ganong, 2000). Upon entry into the CNS, cytokines promote regulatory signals in the brain, through augmentation of hypothalamic-pituitary-adrenal (HPA) axis activity and vagal efferents, which can modify peripheral immune status. Enhanced HPA axis release of epinephrine and cortisol can decrease the release of pro-inflammatory cytokines from macrophages in the periphery (Pavlov et al., 2003). In addition, enhanced vagal efferent activity can trigger the release of acetylcholine from peripheral parasympathetic nerve endings, decreasing the release of pro-inflammatory cytokines (Pavlov et al., 2003). It is therefore evident that the immune system and nervous system communicate to maintain homeostasis, yet under excessive immune challenges alterations in neuronal signaling can develop. Studies have shown that peripheral activation of cytokines can lead to CNS release of various neurotransmitters. Specifically, IL-1 administration may promote CNS release of norepineprhine, serotonin, dopamine, glutamate, and gamma-amino-butyric-acid (GABA) (Dunn, 1992; Zalcman et al., 1994; Casamenti et al., 1999; Luk et al., 1999; Huang and O'Banion, 1998). With enhanced turnover of these neurotransmitters, significant neurological and behavioral alterations transpire. Research has shown how immune challenges can alter neurotransmission leading to behavioral changes and psychiatric disorders (Kronfol & Remick, 2000). For example, elevated levels of interleukin-6 (IL-6) have been associated with depressive symptoms (Bob et al., 2009). In Autism, alteration in immune system function may contribute to impaired neurological signaling. A possible mechanism contributing to neuronal dysfunction in the autistic brain is the transport of noxious substances across the blood-brain barrier into the CNS leading to autoimmunity. Studies have shown how cytokines, chemokines, immunoglobulins, and natural killer cells promote the recruitment of noxious chemicals in the brains of autistic individuals, as well as contribute to autoimmunity (Ashwood et al., 2006). Proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1) and thymus activation-regulated chemokine (TARC), along with cytokines, such as TNF-α, were consistently elevated in the brains of individuals with autism (Cohly & Panja, 2005). The transport or synthesis of cytokines in the brain may contribute to neuroinflammation and possible neurotransmitter imbalances (Cohly & Panja, 2005). Furthermore, Ashwood and colleagues (2008) found that reduced levels of the modulatory cytokine, transforming growth factor-β1 (TGF-β1), in autistic children contributed to the dysregulation of adaptive behaviors and predisposal for autoimmune responses. Autoimmunity can be detrimental to normal neuronal signaling and result in significant behavioral abnormalities (Ashwood et al., 2006). Vojdani and colleagues (2008) reported decreased natural killer cell activity in autistic children with low intracellular levels of glutathione, IL-2, and IL-15. Decreased natural killer cell activity has been associated with autoimmunity through alteration of cytokine production (Johansson et al, 2005). Lastly, Entrom and colleagues (2009) demonstrated elevated immunoglobulin G4 (IgG4) production in children with autism. Elevated IgG antibodies have been identified against brain-specific proteins in the hypothalamus and thalamus of autistic children, again suggesting autoimmunity (Cabanlit et al., 2007). Although limited studies on autism and autoimmunity exist, it has been hypothesized that the excess transport and synthesis of proinflammatory chemokines, cytokines, and immunoglobulins from the periphery to the CNS contribute to the development of autoimmune responses (Cohly & Panja, 2005). Autoimmunity may lead to dysregulated neuronal signaling causing behavioral manifestation of autism symptoms. Therefore, assessment of immune and nervous system function may provide biochemical targets to treat patients with these behavioral abnormalities. Nervous System Biomarkers and Autism Biomarkers are substances used as indicators of a biologic state. Research has revealed the clinical utility of urinary neurotransmitters as practical biomarkers to associate with neurotransmission (Kusaga et al., 2002; Hughes et al., 2004). Urinary neurotransmitter analysis is an innovative, minimally invasive method to assess peripheral neurotransmitter levels, and has a breadth of data to support its usefulness in clinical practice. In the 1950's, research uncovered correlations between urinary catecholamine levels and psychiatric symptoms, such as depression and anxiety (Bergsman, 1959; Carlsson et al., 1959). Recent research has examined the utility of urinary neurotransmitter analysis to categorize subsets of depression and anxiety, and to determine pharmaceutical intervention(s) (Hughes et al., 2004; Otte et al., 2005). Notwithstanding, urinary neurotransmitter analysis can further be used to assess Attention-Deficit-Hyperactivity Disorder (ADHD). Subjects with ADHD tend to have decreased urinary monoamine neurotransmitter levels (specifically, beta-phenylethylamine (PEA)) that can impair mood and attention (Kusaga et al., 2002). What's more, decreased beta-PEA levels may contribute to symptoms of inattentiveness (Berry, 2004). Overall, urinary neurotransmitter assessment can be a useful tool in any clinical practice, especially those managing psychiatric disorders. Urinary neurotransmitter analysis can identify neurotransmitter abnormalities that may contribute to behavioral changes, and thereby allow more appropriate treatment selection (Kahane, 2009). In autism, urinary neurotransmitter analysis has been utilized to examine biochemical abnormalities. As such, urinary serotonin has been the primary urinary neurotransmitter evaluated in autistic individuals. Abnormalities in urinary serotonin have been linked to immunological disturbances. A recent study found consistent elevations in the number of mast cells, along with elevated levels of urinary serotonin, in autistic patients (Castellani et al., 2009). Food, stress, or viruses can stimulate mast cells in the intestines and brains of young children. Localized and systemic immune activation can lead to enhanced cytokine and serotonin release from mast cells and disruption in the lining of the intestines and the blood-brain barrier causing altered neuronal signaling (Castellani et al., 2009). As mentioned previously, a compromised blood-brain barrier permits noxious substances entry into the brain and contribute to neuroinflammation. CNS neurotransmitter abnormalities may result from neuroinflammation leading to behavioral changes. As identified in autistic individuals, raised peripheral glutamate levels may also result from a compromised blood-brain barrier (Moreno-Fuenmayor, et al, 1996, Yip, 2007). Elevated plasma glutamate has been attributed to decreased levels of its rate- limiting enzyme glutamic acid decarboxylase (GAD) in autistic individuals (Shinohe, 2006, Yip, 2007). Specifically, Fatemi and colleagues (2002a) and Yip and others (2007) reported a reduced number of GAD 65 and 67 proteins in Purkinje cells in autistic cerebella. The decreased GAD may be due to autoantibodies specific for GAD, which has been detected in various neurological disorders (Manto et al., 2007). These autoantibodies attack the body's own cells, tissues, and/or organs, causing inflammation and tissue damage. Because GAD converts glutamate to gamma-immunobutyric acid (GABA), a decrease in this enzyme will cause subsequent increases in glutamate levels (Yip, 2007). Clinically, high glutamate levels can be excitotoxic and may lead to neurodegeneration and cognitive dysfunction (Ha et al., 2009). Studies have demonstrated that particular biochemical measurements, such as in plasma amino acid levels, are elevated in children with autism when compared to controls. Autistic children demonstrated elevated levels of plasma glutamate and aspartic acid along with taurine, phenylalanine, asparagine, tyrosine, alanine, and lysine (Moreno-Fuenmayor, Borjas, arrieta, Valera, and Socorro-Candanoza, 1996; Aldred, Moore, Fitzgerald, and Waring, 2003). These amino acid alterations may be caused by immune mediated events, vitamin insufficiency, alterations in neurotransmitter transport, or metabolic derangement. Imaging studies have further revealed abnormalities in autistic individuals, which suggest that abnormal brain growth in many major brain structures such as cerebellum, cerebral cortex, amygdala, hippocampus, corpus collosum, basal ganglia, and brain stem may contribute to behavioral abnormalities in autism (Courchesne et al., 2001; Acosta and Pearl, 2004). Moreover, research shows that reduced cerebellar volume in the autistic brain is due to decreased numbers of Purkinje cells located in the cerebellum. Altered Purkinje cell population can eventually lead to disrupted and weakened motor coordination (Palmen, Engeland, Hof, & Schmitz, 2004). Taken together, abnormal brain growth could be another factor that can contribute to peripheral neurotransmitter imbalances and behavioral manifestation of symptoms. What's more, abnormal neural development and function may result from cytokine recruitment to the CNS and therefore amino acid and neurotransmitter alterations (Cohly & Panja, 2005). Changes in amino acid levels may lead to elevated or insufficient neurotransmitter activity and thus can interfere with normal cognitive development (Aldred, et al., 2003). During infancy and adolescence, maintenance of optimal neuronal signaling is essential to ensure normal development of attentional processes, memory, and overall cognitive function, lending credence to the importance of early intervention through laboratory analysis of neurotransmitters and cytokines. Conclusion Immune system and nervous system activity must be viewed and examined as one system functioning in parallel. It is well established that neurological and immunological abnormalities exist in autistic individuals, however, the relationship between neural and immune function has just recently been emphasized. Food, stress, and viruses can activate immune cells in the periphery and result in CNS disruptions. This may lead to inflammation in the brain and eventually to behavior changes (Castellani et al., 2009). Healthcare practitioners should understand and evaluate the status of the nervous system together with the immune system to best optimize therapeutic intervention(s). Through the development of innovative laboratory tests to analyze neurotransmitters and cytokines, comprehensive information can be obtained to determine neurological and immunological abnormalities. These biochemical measures can serve as biomarkers for clinical symptoms, as well as provide significant guidance for therapeutic selection to reestablish physiological homeostasis and to benefit overall health and wellbeing. References Acosta, M.T., & Pearl, P.L. (2004). Imaging data in autism: From structure to malfunction. Seminars in Pediatric Neurology, 11, 205-213. Aldred, S., Moore, K.M., Fitzgerald, M., & Waring, R.H. (2003). Plasma amino acid levels in children with autism and their families. Journal of Autism and Developmental Disorders, 33, 93-97. American Psychiatric Association. Diagnostic and statistical manual of metal disorders. DSM-IV. 4th ed. Washington, DC: American Psychiatric Association, 1994. Ashwood, P., Enstrom, A., Krakowiak, P., Hertz-Picciotto, I., Hansen, R.L., Croen, L.A., et al. (2008). Decreased transforming growth factor beta1 in autism: A potential link between immune dysregulation and impairment in clinical behavioral outcomes. Journal of Neuroimmunology, 204(1-2), 149-153. Ashwood, P., Willis, S., & Van de Water, J. (2006). The immune response in autism: a new frontier for autism research. Journal of Leukocyte Biology, 80, 1-15. Bergsman, A. (1959) The urinary excretion of adrenaline and noradrenaline in some mental diseases; a clinical and experimental study. Acta psychiatrica Scandinavica. Supplementum, 133, 1-107. Berry, M.D. (2004a) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. Journal of Neurochemistry, 90(2), 257-271. Bob, P., Raboch, J., Maes, M., Susta, M., Pavlat, J., Jasova, D. et al. (2009). Depression, traumatic stress and interleukin-6. Journal of Affective Disorders, [Epub ahead of print]. Borish, L.C., & Steinke, J.W. (2003). 2. Cytokines and chemokines. Journal of Allergy and Clinical Immunology, 111(2), S460-S475. Burger, R.A., & Warren, R.P. (1998). Possible immunogenetic basis for autism. Mental Retardation and Developmental Disabilities Research Reviews, 4, 137-141. Cabanlit, M., Wills, S., Goines, P., Ashwood, P., & Van de Water, J. (2007). Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. The New York Academy of Sciences, 1107, 92-103. Carlsson, A., Rasmussen, E.B., & Kristjansen, P. (1959) The urinary excretion of adrenaline and noradrenaline by depressive patients during iproniazid treatment. Journal of Neurochemistry, 4, 321-324. Casamenti, F., Prosperi, C., Scali, C., et al. (1999). Interleukin-1β activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: Implications for Alzheimer's disease. Neuroscience, 91, 831-842. Castellani, M.L., Conti, C.M., Kempuraj, D.J., Salini, V., Vecchiet, J., & Tete, S. (2009). Autism and immunity: revisited study. International Journal of Immunopathology and Pharmacology, 22(1), 15-19. Cohen, D., Pichard, N., Tordjman, S., Baumann, C., Burglen, L., Excoffier, E., Lazar, G., Mazet, P., Pinquier, C., Verloes, A., & Heron, D. (2005). Specific genetic disorders and autism: Clinical contribution towards their identification. Journal of Autism and Developmental Disorders, 35, 103-116. Cohly, H.H., & Panja, A. (2005) Immunological findings in autism. International Review of Neurobiology, 71, 317-341. Courchesne, E., Karns, C.M., Davis, H.R., Ziccardi, R., Carper, R.A., Tigue, Z.D., Chisum, H.J., Moses, P., Pierce, K., Lord, C., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245-254. Crawley, J.N. (2007). Testing hypotheses about autism. Science, 318, 56-57. Dunn, A.J. (1992). Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: Comparison with interleukin-1. Journal of Pharmacology and Experimental Therapeutics, 261, 964-969. Dunn, A.J. (2006). Effects of cytokines and infections on brain neurochemistry. Clinical Neuroscience Research, 6(1-2), 52-68. Edelson, S.B., & Cantor, D.S. (2000). The neurotoxic etiology of the autistic spectrum disorder: A replicative study. Toxicology and Industrial Health, 16, 239-247. Ek, M., Kurosawa, M., Lundeberg, T., et al. (1998). Activation of vagal afferents after intravenous injection of interleukin-1β: Role of endogenous prostaglandins. Journal of Neuroscience, 18, 9471-9479. Enstrom, A., Krakowiak, P., Onore, C., Pessah, I.N., Hertz-Picciotto, I., Hansen, R.L. et al. (2009). Increased IgG4 levels in children with autism disorder. Brain, Behavior, and Immunity, 23(3), 389-395. Fatemi, S.H., Earle, J., Kanodia, R., Kist, D., Emamian, E.S., Patterson, P.H., Shi, L., & Sidwell, R. (2002). Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: Implications for genesis of autism and schizophrenia. Cellular and Molecular Neurobiology, 22, 25-33. Fatemi, et al. (2002a). Glutamic acid decarbosylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biological Psychiatry, 52, 805-810. Ganong, W.F. (2000). Circumventricular organs: Definition and role in the regulation of endocrine and autonomic function. Clinical and Experimental Pharmacology and Physiology, 27(5-6), 422-427. Glessner, J.T., Wang, K., Cai, G., Korvatska, O., Kim, C.E., Wood, S., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, [Epub ahead of print]. Goehler, L.E., Gaykema, R.P., Nguyen, K.T. et al. (1999). Interleukin-1β in immune cells of the abdominal vagus nerve: A link between the immune and nervous systems? Journal of Neuroscience, 19, 2799-2806. Gutierrez, E.G., Banks, W.A., & Kastin, A.J. (1993). Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. Journal of Neuroimmunology, 47, 169-176. Gutierrez, E.G., Banks, W.A., & Kastin, A.J. (1994). Blood-borne interleukin-1 receptor antagonist crosses the blood brain barrier. Journal of Neuroimmunology, 55, 153-160. Ha, J.S., Leem C.S., Maeng, J.S., Kwon, K.S., & Park, S.S. (2009). Chronic glutamate toxicity in mouse cortical neuron culture. Brain Research, [Epub ahead of print]. Hansen, M.K., Taishi, P., Chen, Z. et al. (1998). Vagotomy blocks the induction of interleukin-1β (IL-1β) mRNA in the brain of rats in response to systemic IL-1β. Journal of Neuroscience, 18, 2247-2253. Huang, T.L., & O'Banion, M.K. (1998). Interleukin-1β and tumor necrosis factor-alpha suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes. Journal of Neuroscience, 71, 1436-1442. Hughes, J.W., Watkins, L., Blumenthal, J.A., Kuhn, C., & Sherwood, A. (2004) Depression and anxiety symptoms are related to increased 24-hour urinary norepinephrine excretion among healthy middle-aged women. Journal of Psychosomatic Research, 57(4), 353-358. Iversson, S.A., Bjerre, L., Vegfors, P., & Ahlfors, K. (1990). Autism as one of several abnormalities in two children with congenital cytomegalovirus infection. Neuropediatrics, 21, 102-103. Johansson, S., Berg, L., Hall, H., & Hoglund, P. (2005). NK cells: Elusive players in autoimmunity. Trends in Immunology, 26, 613-618. Kahane, A. (2009). Urinary Neurotransmitter Analysis as a Biomarker for Psychiatric Disorders. Townsend Letter, 1, 70-72. Kibersti, P., & Roberts, L. (2002). It's Not Just the Genes. Science, 296, 685. Kronfol, Z., & Remick, D. (2000). Cytokines and the brain: implications for clinical psychiatry. American Journal of Psychiatry, 158(7), 1163-1164. Kusaga, A., Yamashita, Y., Koeda, T., Hiratani, M., Kaneko, M., Yamada, S., & Matsuishi, T. (2002) Increased urine phenylethylamine after methylphenidate treatment in children with ADHD. Annals of Neurology, 52(3), 372-374. Layé, S., Bluthé, R.M., Kent, S. et al. (1995). Subdiphragmatic vagotomy blocks induction of Il-1 mRNA in mice brain in response to peripheral LPS. American Journal of Physiology, 268, R1327-R1331. Luk, W.P, Zhang, Y., White, T.D. et al. (1999). Adenosine. A mediator of interleukin-1β ??induced hippocampol synaptic inhibition. Journal of Neuroscience, 19, 4238-4244. Manto, M.U., Laute, M.A., Aguera, M., Rogemond, V., Pandolfo, M., & Honnorat, J. (2007). Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Annals of Neurology, 61(6), 544-551. Maier, S.F., Goehler, L.E., Fleshner, M. et al. (1998). The role of the vagus nerve in cytokine-to-brain communication. Annals of the New York Academy of Sciences, 840, 289-300. Moreno-Fuenmayor, H., Borjas, L., Arrieta, A., Valera, V., & Socorro-Candanoza, L. (1996). Plasma excitatory amino acids in autism. The Journal of Clinical Investigation, 37(2), 113-128. Otte, C., Neylan, T.C., Pipkin, S.S., Browner, W.S., & Whooley, M.A. (2005) Depressive symptoms and 24-hour urinary norepinephrine excretion levels in patients with coronary disease: findings from the Heart and Soul Study. American Journal of Psychiatry, 162(11), 2139-2145. Palmen, S., Engelan, H., Hof, P.R., & Schmitz, C. (2004). Neuropathological findings in autism. Brain, 127, 2572-2583. Pavlov, V.A., Wang, H., Czura, C.J., Friedman, S.G., & Tracey, K.J. (2003). The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Molecular Medicine, 9(5-8), 125-134. Polleux, F., & Lauder, J.M. (2004). Toward a developmental neurobiology of autism. Mental Retardation and Developmental Disabilities Research Reviews, 10, 303-317. Shi, L., Fatemi, S.H., Sidwell, R.W. & Patterson, P.H. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. Journal of Neuroscience, 23, 297-302. Shinohe, et al. (2006). Increased serum levels of glutamate in adult patients with autism. Progress in Neuro-Psychopharmacology and Biological Psychiastry, 30, 1472-1477. Yip, J., Soghomonia, J.J., & Blatt, G.J. (2007). Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: Pathophysiological implications. Acta Neuropathology, 113, 559-568. Vojdani, A., Campbell, A.W., Anyanwu, E., Kashanian, A., Bock, K. & Vojdani, E. (2002). Antibodies to neuron-specific antigens in children with autism: Possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Stretoccoccus group A. Journal of Neuroimmunology, 129, 168-177. Vojdani, A., Mumper, E., Granpeesheh, D., Mielke, L., Traver, D., Bock, K., et al. (2008). Low natural killer cell cytotoxic activity in autism: The role of glutathione, IL-2 and IL-15. Journal of Neuroimmunology, 205(1-2), 148-154. Wakefield, A.J., Murch, S.H., Anthony, A., Linnell, J., Casson, D.M., Malik, M., Berelowitz, M., Dhillon, A.P., Thomson, M.A., Valentine, A., Davies, S.E., & Walker-Smith, J.A. (1998). Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet, 351, 637-641. Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J.T., Abrahams, B.S., et al. (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorder. Nature, [Epub ahead of print] Zalcman, S., Gree-Johnson, J.M., Murray, L. et al. (1994). Cytokine-specific central monoamine alterations induced by interleukin-1-2, and -6. Brain Research, 15, 287-290.
علم المناعة العصبية من اضطراب طيف التوحد.
الناقلات العصبية والمؤشرات الحيوية التنبؤية للاستجابة للعلاج تعاطي المخدرات
علم المناعة العصبية من اضطراب طيف التوحد.
معالجة عدم التوازن الغدة الكظرية: مستقبل الغدة الكظرية الصحة
Avipaxin والتحوير من الجهاز المناعي.
الأداة المساعدة السريرية البولية تحليل ناقل عصبي: نظرة عامة.
Daxitrol لا غنى عنه: A أسلوب جديد لضبط الشهوة.
تفاعلات فرط الحساسية وطرق كشفها.
مثيلة: الأساسي لسلامة الجهاز العصبي
A-أسفل أعلى استراتيجية جديدة لمعالجة الاختلالات اللاإرادي.
تحميل PDF

علم المناعة العصبية طيف التوحد اضطراب

ديفيد مارك، MSA؛ كيلي أولسون، PhDa

aNeuroScience، وشركة، 373 شارع 280، أسولا، WI 54020، الولايات المتحدة الأمريكية
عنوان المراسلات إلى: david.marc@neurorelief.com
ملخص

التوحد هو اضطراب في النمو تتميز الشذوذات المناعية والعصبية. وجرى بحث دور السيتوكينات في الفيزيولوجيا المرضية لمرض التوحد مما يدل على العلاقة مع المتغيرة نفاذية حاجز الدم في الدماغ وneuroinflammation لاحق. التوظيف خلوى في الجهاز العصبي المركزي قد يؤدي إلى تغييرها يشير العصبي ومظهر من مظاهر السلوك أعراض التوحد. محصنة بوساطة أحداث أخرى مثل التغييرات في عدد ونشاط الخلايا القاتلة الطبيعية، الضامة، المناعية، والجلوتاثيون يمكن أن تسهم في الخلايا العصبية الإشارات والعصبي الاختلالات المتغيرة. والغرض من هذا الاستعراض هو دراسة العلاقة بين جهاز المناعة وخلل الجهاز العصبي لتحديد المؤشرات الحيوية لاضطراب طيف التوحد. سنبحث فائدة السيتوكينات في الدم ويحلل العصبي البولية والمؤشرات الحيوية لمرض التوحد.


مقدمة

التوحد هو اضطراب النمو المتفشي تتسم بالتطور ضعف التفاعل الاجتماعي والتواصل، وذخيرة مقيد بشكل ملحوظ من الأنشطة والاهتمامات (جمعية الأمريكية للطب النفسي، 1994). المسببات الدقيق لمرض التوحد ما زالت غير معروفة إلى حد كبير، ومع ذلك، فقد ظهرت الكتابات تشير إلى وراثية، العصبية، المناعية، والمساهمات البيئية. العوامل المناعية والبيئية، مثل النظام الغذائي، والعدوى، والاكسيوبيوتك تلعب أدوارا حاسمة في تطور مرض التوحد. (Ivarsson، Bjerre، Vegfors، وAhlfors، 1990؛. يكفيلد وآخرون، 1998؛ Edelson وكانتور، 2002؛ فاطمي وآخرون، 2002؛. Kibersti وروبرتس، 2002). تشوهات في وظيفة الأنزيمية (فاطمي وآخرون، 2002A)، الأجسام المضادة للبروتينات الدماغ (Vojdani وآخرون، 2002)، والتهابات الأمهات أثناء الحمل (شي وآخرون، 2003) وقد ورد في السكان التوحد. بالإضافة إلى ذلك، التغيرات المرضية في الجينات المسؤولة في الزخرفة من الجهاز العصبي المركزي، المسارات البيوكيميائية، وقد لوحظ تطور التشعبات ونقاط الاشتباك العصبي، والجينات المرتبطة مع نظام المناعة في هذه الفئة من السكان (Burber وارن، 1998؛ Palmen، Engeland، هوف وشميتز، 2004؛ Polleux ولودر، 2004؛ كوهين وآخرون، 2005؛ كراولي، 2007؛ Glessner وآخرون، 2009؛. انغ وآخرون، 2009).

ومن المثير للاهتمام، وهي هيئة الناشئة من الأدلة تتزايد بشأن الصلة بين الوظيفة المناعية غير طبيعي وضعف الجهاز العصبي الذين يعانون من اضطرابات طيف التوحد. في الأوقات الحرجة للتنمية الرضع، قد يؤدي ديسريغولاتيون المناعة في الإفراج عن الجزيئات المناعية، مثل كيموكينات والسيتوكينات، مما يؤدي إلى تطوير الخلايا العصبية المعدلة وظيفة العصبية (Cohly وPanja، 2005).

كيموكينات والسيتوكينات هي بروتينات التي تدير الاتجار الخلايا المناعية وترتيب الخلوي للأجهزة المناعة وتحديد الاستجابات المناعية المناسبة (Borish وSteinke، 2003). ويمكن نقل السيتوكينات و / أو تصنيعه في الجهاز العصبي المركزي (CNS) وبالتالي إقامة اتصال بين الخلايا المناعية والخلايا العصبية الطرفية CNS (دان، 2006). والغرض من هذا الاستعراض هو تحديد التشوهات العصبية والمناعية الموجودة في الأشخاص الذين يعانون من مرض التوحد. وعلاوة على ذلك، فإنه أصبح من الواضح جدا أن اختبار العلامات البيولوجية neuroimmune لمرض التوحد يمكن التعرف على هذه التشوهات وضمان فعالية العلاجية.


السيتوكينات والعصبي

السيتوكينات الصادرة عن الخلايا المناعية، وخاصة انترلوكين 1 (IL-1) ونخر الورم عامل α (TNF-α)، والتواصل مع الجهاز العصبي المركزي للتأثير على النشاط العصبي وتعديل السلوكيات، والإفراج عن هرمون، و "طبيعية" وظيفة اللاإرادي (دن ، 2006). يمكن السيتوكينات يدخل الدماغ عن طريق آليات مختلفة بما في ذلك النقل النشط أو الدخول المباشر عبر حاجز الدم في الدماغ خطر. وقد تم توثيق آليات النقل النشطة التي تنطوي على نظام تشبع لIL-1 و TNF-α (دن، 1992؛ جوتيريز، البنوك، وKastin، 1993؛ جوتيريز، البنوك، Kastin، 1994). بالإضافة إلى ذلك، وجد ماير وزملاؤه (1998) أن السيتوكينات يمكن أن تدخل مباشرة على الجهاز العصبي المركزي في مناطق محيطة بالبطينات، في الغالب الباحة المنخفضة، حيث حاجز الدم في الدماغ هو أقل واقية (بافلوف وآخرون، 2003). وتشمل المناطق محيطة بالبطينات الدخول الأخرى خلوى المحتملين الغدة الصنوبرية، الجهاز تحت القبو، organum الوعائية من الانتهائي الصفيحة، الضفيرة المشيمية، سماحة متوسط، جهاز subcommissural، والنخامية الخلفية (Ganong، 2000).

عند الدخول إلى الجهاز العصبي المركزي، السيتوكينات تعزيز الإشارات التنظيمية في الدماغ، من خلال زيادة من الغدة النخامية، الغدة الكظرية (HPA) النشاط محور والعصب الحائر efferents، والتي يمكن تعديل الوضع المناعي الطرفية. تعزيز HPA الإفراج محور الادرينالين والكورتيزول يمكن أن تقلل من الإفراج عن السيتوكينات الموالية للالتهابات من الضامة في محيط (بافلوف وآخرون، 2003). بالإضافة إلى ذلك، يمكن لزيادة النشاط صادر المبهم تؤدي إلى الإفراج الأستيل كولين من النهايات العصبية الطرفية الحركية، والحد من إطلاق السيتوكينات الموالية للالتهابات (بافلوف وآخرون، 2003). ولذلك فمن الواضح أن نظام المناعة والجهاز العصبي التواصل للحفاظ على التوازن، ولكن في ظل التحديات المفرطة المناعية يمكن إحداث تغييرات في الإشارات العصبية تتطور.

وقد أظهرت الدراسات أن تفعيل الطرفية السيتوكينات يمكن أن يؤدي إلى إطلاق الجهاز العصبي المركزي من مختلف الناقلات العصبية. على وجه التحديد، IL-1 الإدارة قد تعزز الإفراج CNS من norepineprhine، السيروتونين، الدوبامين، الغلوتامات، وجاما أمينو زبدي حمض (GABA) (دن، 1992؛ Zalcman وآخرون، 1994؛. Casamenti وآخرون، 1999؛. لوك وآخرون، 1999؛. هوانغ وO'Banion، 1998). مع تعزيز مبيعاتها من هذه الناقلات العصبية، تغييرات عصبية وسلوكية هامة ارشح. وقد أظهرت الأبحاث مدى التحديات المناعية يمكن أن يغير العصبي مما يؤدي إلى تغيرات سلوكية واضطرابات نفسية (قرنفل وريميك، 2000). على سبيل المثال، وقد ارتبطت مستويات مرتفعة من انترلوكين 6 (IL-6) مع أعراض الاكتئاب (بوب وآخرون، 2009).

في التوحد، تغيير في وظيفة الجهاز المناعي يمكن أن تسهم في الإشارات العصبية ضعف. آلية ممكنة تساهم في ضعف الخلايا العصبية في الدماغ التوحد هي نقل المواد الضارة عبر حاجز الدم في الدماغ إلى الجهاز العصبي المركزي مما يؤدي إلى أمراض المناعة الذاتية. وقد أظهرت الدراسات كيف السيتوكينات، كيموكينات، المناعية، والخلايا القاتلة الطبيعية تعزز التوظيف من المواد الكيميائية الضارة في أدمغة الأفراد الذين يعانون من التوحد، وكذلك تساهم في المناعة الذاتية (أشووود وآخرون، 2006). كيموكينات Proinflammatory، مثل الوحيدات الكيميائي البروتين 1 (MCP-1) والغدة الصعترية التنظيم تفعيل chemokine (TARC)، جنبا إلى جنب مع السيتوكينات، مثل TNF-α، كانت مرتفعة باستمرار في أدمغة الأفراد المصابين بالتوحد (Cohly وPanja، 2005). نقل أو توليف السيتوكينات في الدماغ يمكن أن تسهم في neuroinflammation والاختلالات العصبي الممكنة (Cohly وPanja، 2005). وعلاوة على ذلك، وجد أشووود وزملاؤه (2008) أن انخفاض مستويات خلوى تغييري، وتحويل عامل النمو β1 (TGF-β1)، في الأطفال الذين يعانون من التوحد ساهمت في التقلبات من السلوكيات التكيفية وpredisposal للاستجابات المناعة الذاتية. المناعة الذاتية يمكن أن يكون ضارا الإشارات العصبية الطبيعية، ويؤدي إلى الانحرافات السلوكية كبيرة (أشووود وآخرون، 2006). Vojdani وزملاؤه (2008) عن انخفاض في حركة الخلايا الطبيعية القاتلة في الأطفال المصابين بالتوحد لديهم مستويات منخفضة من داخل الخلايا الجلوتاثيون، IL-2، وIL-15. ارتبط انخفاض نشاط الخلايا القاتلة الطبيعية مع المناعة الذاتية من خلال تغيير إنتاج السيتوكينات (جوهانسون وآخرون، 2005). وأخيرا، أظهرت Entrom وزملاؤه (2009) مرتفعة المناعي G4 (IgG4) الإنتاج في الأطفال الذين يعانون من التوحد. وقد تم تحديد الأجسام المضادة مفتش مرتفعة ضد بروتينات الدماغ محددة في منطقة ما تحت المهاد والمهاد من الأطفال الذين يعانون من التوحد، مما يشير مرة أخرى المناعة الذاتية (Cabanlit وآخرون، 2007).

على الرغم من أن الدراسات محدودة على التوحد والمناعة الذاتية موجودة، فقد تم الافتراض بأن النقل الزائدة وتوليف كيموكينات proinflammatory، السيتوكينات، والمناعية من المحيط إلى الجهاز العصبي المركزي يساهم في وضع استجابات المناعة الذاتية (Cohly وPanja، 2005). قد يؤدي المناعة الذاتية لdysregulated الإشارات العصبية تسبب مظاهر سلوكية أعراض التوحد. لذلك، وتقييم وظيفة الجهاز المناعي والجهاز العصبي يمكن أن توفر الأهداف الحيوية لعلاج المرضى الذين يعانون من هذه الانحرافات السلوكية.


الجهاز العصبي المؤشرات الحيوية والتوحد

المؤشرات الحيوية هي مواد تستخدم كمؤشرات لدولة البيولوجية. وقد كشفت الأبحاث فائدة سريرية من الناقلات العصبية البولية والمؤشرات الحيوية عملية لاقترانه العصبي (Kusaga وآخرون، 2002؛. هيوز وآخرون، 2004). تحليل البول هو الناقل العصبي، طريقة مبتكرة الغازية الحد الأدنى لتقييم مستويات الناقل العصبي الطرفية، ولها مجموعة واسعة من البيانات لدعم فائدته في الممارسة السريرية. في عام 1950، كشفت النقاب عن علاقة بين مستويات الكاتيكولامينات البولية وأعراض نفسية، مثل الاكتئاب والقلق (Bergsman 1959؛ كارلسون وآخرون، 1959). درست البحوث التي أجريت مؤخرا في جدوى التحليل العصبي البولية لتصنيف مجموعات فرعية من الاكتئاب والقلق، وتحديد التدخلات الدوائية (ق) (هيوز وآخرون، 2004؛. اوتي وآخرون، 2005). بالرغم من ذلك، يمكن أن تزيد من تحليل البول العصبي استخدامها لتقييم اضطراب نقص الانتباه فرط النشاط، (ADHD). الموضوعات مع ADHD يميلون إلى انخفضت البولية مستويات مثبطات الناقل العصبي (على وجه التحديد، بيتا phenylethylamine (PEA)) يمكن أن تضعف المزاج والانتباه (Kusaga وآخرون، 2002). ما هو أكثر من ذلك، انخفضت مستويات بيتا PEA يمكن أن تسهم في أعراض عدم الانتباه (بيري، 2004).
عموما، تقييم عصبي البول يمكن أن تكون أداة مفيدة في أي الممارسة السريرية، وخاصة أولئك الذين يديرون الاضطرابات النفسية. تحليل البول العصبي يمكن تحديد التشوهات العصبي التي قد تسهم في التغيرات السلوكية، وبالتالي تسمح اختيار العلاج الأنسب (كاهانا، 2009).
في التوحد، وقد تم استخدام التحليل العصبي البول لفحص شذوذ البيوكيميائية. على هذا النحو، كان السيروتونين الناقل العصبي البولية البولية الأساسي تقييمها في الأفراد الذين يعانون من التوحد. وقد تم ربط خلل في السيروتونين البولية الاضطرابات المناعية. وجدت دراسة حديثة ارتفاعات مستمرة في عدد الخلايا البدينة، جنبا إلى جنب مع مستويات مرتفعة من السيروتونين البول، في المرضى الذين يعانون من التوحد (كاستيلاني وآخرون، 2009). المواد الغذائية، يمكن أن الإجهاد، أو الفيروسات تحفيز الخلايا البدينة في الأمعاء وأدمغة الأطفال الصغار. مترجمة وتنشيط جهاز المناعة الجهازية يمكن أن يؤدي إلى تعزيز خلوى وإطلاق السيروتونين من الخلايا البدينة واضطراب في بطانة الأمعاء وحاجز الدم في المخ مما يؤدي غيرت الإشارات العصبية (كاستيلاني وآخرون، 2009). كما ذكر سابقا، يسمح حاجز الدم في الدماغ خطر دخول المواد الضارة في الدماغ وتساهم في neuroinflammation. CNS تشوهات العصبي قد تنجم عن neuroinflammation مما يؤدي إلى تغيرات سلوكية.
كما تم تحديدها في الأفراد الذين يعانون من التوحد، رفعت مستويات الصوديوم المحيطية قد يؤدي أيضا من حاجز للخطر الدم في الدماغ (مورينو فوينمايور، وآخرون، 1996، ييب، 2007). ويعزى ارتفاع الصوديوم في البلازما إلى انخفاض مستويات rate- في الحد من انزيم كربوكسيل حمض الجلوتاميك (GAD) في الأفراد الذين يعانون من التوحد (Shinohe، 2006، ييب، 2007). على وجه التحديد، ذكرت فاطمي وزملاؤه (2002A) وييب وآخرون (2007) انخفاض عدد GAD 65 و 67 البروتينات في الخلايا العصبية في مخيخات التوحد. وGAD انخفضت قد يكون راجعا إلى الأجسام المضادة المحددة لإدماج المرأة في التنمية، والتي تم الكشف عنها في مختلف الاضطرابات العصبية (مانتو وآخرون، 2007). هذه الأجسام المضادة تهاجم الجسم نفسه الخلايا والأنسجة، و / أو أجهزة، مما يسبب التهاب وتلف الأنسجة. لأن GAD يحول الغلوتامات لجاما immunobutyric حمض (GABA)، فإن الانخفاض في معدلات هذا الإنزيم يسبب زيادة لاحقة في مستويات الصوديوم (ييب، 2007). يمكن سريريا مستويات عالية الغلوتامات يكون excitotoxic المواد ويمكن أن تؤدي إلى تنكس عصبي والخلل المعرفي (ها وآخرون، 2009).
وقد أثبتت الدراسات أن القياسات البيوكيميائية معينة، كما هو الحال في البلازما مستويات الأحماض الأمينية، وارتقى في الأطفال الذين يعانون من التوحد بالمقارنة مع الضوابط. أظهر الأطفال الذين يعانون من التوحد مستويات مرتفعة من الصوديوم في البلازما وحمض الأسبارتيك جنبا إلى جنب مع التورين، الفنيل الأنين، الأسباراجين، التيروزين، ألانين، ويسين (مورينو فوينمايور، بورجاس، اريتا، فاليرا، وسوكورو-Candanoza، 1996؛ ألدريد، مور، فيتزجيرالد، و ارنج، 2003). قد يكون سبب هذه التغيرات الأحماض الأمينية التي مأمن الأحداث بوساطة، وفيتامين القصور، وتعديلات في النقل الناقلات العصبيه، أو اضطراب التمثيل الغذائي.
وكذلك كشفت دراسات التصوير تشوهات في الأفراد الذين يعانون من التوحد، والتي تشير إلى أن نمو الدماغ غير طبيعي في العديد من الهياكل الدماغ الكبرى مثل المخيخ، قشرة الدماغ، اللوزة، الحصين، الإحضار collosum، العقد القاعدية، وجذع الدماغ يمكن أن تسهم في الانحرافات السلوكية في مرض التوحد (Courchesne وآخرون، 2001؛. أكوستا واللؤلؤ، 2004). وعلاوة على ذلك، هو أنه يبين البحث أن انخفاض حجم المخيخ في الدماغ التوحد بسبب انخفاض أعداد الخلايا العصبية تقع في المخيخ. غيرت السكان الخلية العصبية يمكن أن تؤدي في النهاية إلى اضطراب وضعف التنسيق الحركي (Palmen، Engeland، هوف، وشميتز، 2004). مجتمعة، يمكن أن نمو الدماغ غير طبيعي أن يكون عامل آخر يمكن أن تسهم في الاختلالات العصبي الطرفية ومظاهر السلوك الأعراض.
ما هو أكثر من ذلك، التطور العصبي الشاذ وظيفة قد تنجم عن تجنيد خلوى في الجهاز العصبي المركزي وبالتالي الأحماض الأمينية والعصبي التعديلات (Cohly وPanja، 2005). التغيرات في مستويات الأحماض الأمينية قد يؤدي إلى ارتفاع أو عدم كفاية النشاط العصبي، وبالتالي يمكن أن تتداخل مع التطور الطبيعي المعرفية (ألدريد، وآخرون، 2003). خلال مرحلة الطفولة والمراهقة، وصيانة المثلى الإشارات العصبية ضرورية لضمان التطور الطبيعي للعمليات الإنتباه والذاكرة والوظائف الإدراكية العامة، يضفي مصداقية على أهمية التدخل المبكر من خلال التحليل المختبري من الناقلات العصبية والسيتوكينات.

استنتاج

جهاز المناعة، ونشاط الجهاز العصبي ويجب أن ينظر وفحص كنظام واحد يعمل في نفس الوقت. ومن الثابت أن التشوهات العصبية والمناعية موجودة في الأفراد الذين يعانون من التوحد، ومع ذلك، فقد تم مؤخرا وأكد على العلاقة بين وظيفة العصبية والمناعية. المواد الغذائية، يمكن أن الإجهاد، والفيروسات تنشيط الخلايا المناعية في محيط ويؤدي إلى اضطرابات الجهاز العصبي المركزي. وهذا قد يؤدي إلى التهاب في الدماغ، وفي نهاية المطاف إلى تغيير السلوك (كاستيلاني وآخرون، 2009). يجب أن ممارسي الرعاية الصحية على فهم وتقييم حالة الجهاز العصبي جنبا إلى جنب مع نظام المناعة لأفضل تحسين التدخل العلاجي (ق). من خلال تطوير الاختبارات المعملية مبتكرة لتحليل الناقلات العصبية والسيتوكينات، ويمكن الحصول على معلومات شاملة لتحديد التشوهات العصبية والمناعية. ويمكن لهذه التدابير الكيميائية الحيوية بمثابة المؤشرات الحيوية للأعراض السريرية، فضلا عن توفير التوجيه كبير لاختيار العلاجية بغية إعادة التوازن الفسيولوجي والاستفادة الصحة العامة والرفاه.

المراجع

أكوستا، M.T.، واللؤلؤ، P.L. (2004). بيانات التصوير في التوحد: من الهيكل لعطل. حلقات دراسية في طب الأطفال طب الأعصاب، 11، 205-213.
ألدريد، S.، مور، KM، فيتزجيرالد، M.، وارنج، RH (2003). البلازما مستويات حمض الأميني في الأطفال المصابين بالتوحد وأسرهم. مجلة للتوحد واضطرابات النمو، 33، 93-97.
جمعية الأمريكية للطب النفسي. الدليل التشخيصي والإحصائي للاضطرابات المعادن. DSM-IV. الطبعة 4. واشنطن، DC: الرابطة الأمريكية للطب النفسي، 1994.
أشووود، P.، Enstrom، A.، Krakowiak، P.، هيرتز Picciotto، I.، هانسن، RL، Croen، LA، وآخرون. (2008). انخفض عامل النمو المحول beta1 في التوحد: ارتباط محتمل بين التقلبات المناعة وضعف في النتائج السلوكية السريرية. مجلة علم المناعة العصبية، 204 (1-2)، 149-153.
أشووود، P.، ويليس، S.، وفان دي المياه، J. (2006). الاستجابة المناعية في مرض التوحد: جبهة جديدة لأبحاث مرض التوحد. مجلة علم الأحياء خلايا الدم البيضاء، 80، 1-15.
Bergsman، A. (1959) وإفراز البول من الأدرينالين والنورادرينالين في بعض الأمراض العقلية؛ دراسة سريرية وتجريبية. اكتا psychiatrica Scandinavica. Supplementum، 133، 1-107.
التوت، MD (2004A) الثدييات العصبي الأمينات تتبع نظام المركزية. الأمفيتامينات الدوائية، neuromodulators فيزيولوجي. مجلة الكيمياء العصبية، و 90 (2)، 257-271.
بوب، P.، Raboch، J.، مايس، M.، Susta، M.، Pavlat، J.، Jasova، D. آخرون. (2009). الاكتئاب والصدمة وانترلوكين 6. مجلة للاضطرابات العاطفية، [الإليكتروني (Epub) قبل الطباعة].
Borish، L.C.، وSteinke، J.W. (2003). 2. السيتوكينات و chemokines. مجلة الحساسية والمناعة السريرية، 111 (2)، S460، S475.
برغر، قانون الجمهورية، وارن، R.P. (1998). أساس مستمنع محتمل لمرض التوحد. التخلف العقلي والإعاقات التنموية البحوث تعليقات، 4، 137-141.
Cabanlit، M.، والوصايا، S.، جوينز، P.، أشووود، P.، وفان دي المياه، J. (2007). الأجسام المضادة الدماغ محددة في البلازما من الموضوعات مع اضطراب طيف التوحد. أكاديمية نيويورك للعلوم، 1107، 92-103.
كارلسون، A.، راسموسن، EB، وKristjansen، P. (1959) وإفراز البول من الأدرينالين والنورادرينالين من قبل المرضى الاكتئاب خلال فترة العلاج إيبرونيازيد. مجلة الكيمياء العصبية، 4، 321-324.
Casamenti، F.، بروسبيري، C.، سكالي، C.، وآخرون. (1999). انترلوكين 1β ينشط الخلايا الدبقية الدماغ الأمامي ويزيد من إنتاج أكسيد النيتريك والغلوتامات القشرية والإفراج GABA في الجسم الحي: الآثار المترتبة على مرض الزهايمر. علم الأعصاب، 91، 831-842.
كاستيلاني، ML، كونتي، CM، Kempuraj، DJ، ساليني، V.، Vecchiet، J.، & تيتي، S. (2009). التوحد والمناعة: دراسة إعادة النظر. المجلة الدولية للالباثولوجيا المناعية والصيدلة، 22 (1)، 15-19.
كوهين، D.، Pichard، N.، Tordjman، S.، باومان، C.، Burglen، L.، Excoffier، E.، لازار، G.، مازيت، P.، Pinquier، C.، Verloes، A.، وهيرون، D. (2005). اضطرابات معينة الوراثية ومرض التوحد: مساهمة السريرية نحو التعرف عليهم. مجلة للتوحد واضطرابات النمو، 35، 103-116.
Cohly، HH، وPanja، A. (2005) النتائج المناعية في مرض التوحد. المجلة الدولية للبيولوجيا الأعصاب، 71، 317-341.
Courchesne، E.، كارنس، CM، ديفيس، HR، Ziccardi، R.، كاربر، RA، Tigue، ZD، Chisum، HJ، موسى، P.، بيرس، K.، يا رب، C.، وآخرون. (2001). أنماط نمو الدماغ غير عادية في وقت مبكر من الحياة في المرضى الذين يعانون من اضطراب التوحد: دراسة التصوير بالرنين المغناطيسي. الأعصاب، 57، 245-254.
كراولي، J.N. (2007). اختبار الفرضيات حول مرض التوحد. العلوم، 318، 56-57.
دن، A.J. (1992). تفعيل الناجم عن الذيفان الداخلي الكاتيكولامينات الدماغي والتمثيل الغذائي السيروتونين: مقارنة مع انترلوكين 1. مجلة علم الصيدلة والعلاج التجريبي، 261، 964-969.
دن، A.J. (2006). آثار السيتوكينات والتهابات في الكيمياء العصبية في الدماغ. السريرية علم الأعصاب البحوث، 6 (2/1)، 52-68.
Edelson، S.B.، وكانتور، D.S. (2000). المسببات أعصاب من اضطراب طيف التوحد: دراسة تنسخي. علم السموم والصحة الصناعية، 16، 239-247.
خلفا، M.، كوروساوا، M.، Lundeberg، T.، وآخرون. (1998). تفعيل afferents العصب الحائر بعد الحقن في الوريد من انترلوكين 1β: دور البروستاجلاندين الذاتية. مجلة علم الأعصاب، 18، 9471-9479.
Enstrom، A.، Krakowiak، P.، Onore، C.، عيد الفصح، IN، هيرتز Picciotto، I.، هانسن، RL وآخرون. (2009). زيادة مستويات IgG4 في الأطفال الذين يعانون من اضطراب التوحد. الدماغ والسلوك والحصانة، 23 (3)، 389-395.
فاطمي، SH، إيرل، J.، Kanodia، R.، كيست، D.، Emamian، ES، باترسون، PH، شي، L.، وسيدويل، R. (2002). العدوى الفيروسية قبل الولادة ويؤدي إلى ضمور الخلايا الهرمية وضخامة الرأس في مرحلة البلوغ: الآثار المترتبة على نشأة التوحد وانفصام الشخصية. الخلوية والجزيئية بيولوجيا الأعصاب، 22، 25-33.
فاطمي، وآخرون. (2002A). حمض الجلوتاميك decarbosylase 65 ويتم تخفيض 67 كيلو دالتون البروتينات في الجدارية التوحد والقشور المخيخ. الطب النفسي البيولوجي، 52، 805-810.
Ganong، W.F. (2000). أجهزة محيطة بالبطينات: تعريف ودورها في تنظيم الغدد الصماء وظيفة اللاإرادي. السريرية والتجريبية الصيدلة وعلم وظائف الأعضاء، 27 (5-6)، 422-427.
Glessner، JT وانغ، K.، كاي، G.، Korvatska، O.، كيم، CE، الخشب، S.، وآخرون. (2009). التوحد الجينوم على نطاق التباين في عدد النسخ يكشف بتحول والجينات العصبية. الطبيعة، [قبل الإليكتروني (Epub) من طباعة].
Goehler، L.E.، Gaykema، R.P.، نجوين، K.T. وآخرون. (1999). انترلوكين 1β في الخلايا المناعية للعصب المبهم في البطن: ويربط بين جهاز المناعة والجهاز العصبي؟ مجلة علم الأعصاب، 19، 2799-2806.
جوتيريز، على سبيل المثال، البنوك، W.A.، وKastin، A.J. (1993). ويتم نقل الورم الفئران عامل نخر ألفا من الدم الى الدماغ في الماوس. مجلة علم المناعة العصبية، 47، 169-176.
جوتيريز، على سبيل المثال، البنوك، W.A.، وKastin، A.J. (1994). المنقولة عن طريق الدم انترلوكين 1 مستقبلات يعبر حاجز الدم في الدماغ. مجلة علم المناعة العصبية، 55، 153-160.
ها، JS، الليم CS، Maeng، JS، كوون، KS، وبارك، SS (2009). سمية الغلوتامات المزمنة في الماوس ثقافة العصبية القشرية. أبحاث الدماغ، [الإليكتروني (Epub) قبل الطباعة].
هانسن، M.K.، تيشي، P.، تشن، Z. وآخرون. (1998). كتل قطع المبهم تحريض انترلوكين 1β (IL-1β) مرنا في دماغ الفئران استجابة لالنظامية IL-1β. مجلة علم الأعصاب، 18، 2247-2253.
هوانغ، T.L.، وO'Banion، M.K. (1998). انترلوكين 1β وعامل نخر الورم ألفا قمع ديكساميثازون تحريض مخلقة الجلوتامين في الخلايا النجمية الماوس الأولية. مجلة علم الأعصاب، 71، 1436-1442.
هيوز، JW، واتكينز، L.، بلومنتال، JA، كون، C.، وشيروود، ترتبط A. (2004) الاكتئاب والقلق أعراض زيادة على مدار 24 ساعة بافراز البولية إفراز بين النساء في منتصف العمر صحية. مجلة البحوث النفسي، 57 (4)، 353-358.
Iversson، SA، Bjerre، L.، Vegfors، P.، وAhlfors، K. (1990). التوحد واحدة من عدة تشوهات في اثنين من الأطفال الذين يعانون من عدوى الفيروس المضخم للخلايا الخلقية. Neuropediatrics، 21، 102-103.
يوهانسون، S.، بيرغ، L.، قاعة، H.، & Hoglund، P. (2005). الخلايا القاتلة الطبيعية: اللاعبين الهارب في المناعة الذاتية. اتجاهات في علم المناعة، 26، 613-618.
كاهانا، A. (2009). البولية تحليل ناقل عصبي والعلامات البيولوجية للاضطرابات النفسية. تاونسند رسالة، 1، 70-72.
Kibersti، P.، وروبرتس، L. (2002). انها ليست مجرد الجينات. العلوم، 296، 685.
قرنفل، Z.، وريميك، D. (2000). السيتوكينات والدماغ: الآثار المترتبة على الطب النفسي السريري. المجلة الأمريكية للطب النفسي، 158 (7)، 1163-1164.
Kusaga، A.، ياماشيتا، Y.، Koeda، T.، Hiratani، M.، كانيكو، M.، يامادا، S.، وMatsuishi، T. (2002) زيادة البول phenylethylamine بعد العلاج الميثيلفينيديت في الأطفال الذين يعانون من ADHD. دورية حوليات طب الاعصاب، 52 (3)، 372-374.
أونلي، S.، Bluthé، R.M.، كينت، S. وآخرون. (1995). Subdiphragmatic كتل قطع المبهم تحريض ايل-1 مرنا في الفئران الدماغ استجابة لLPS الطرفية. المجلة الأمريكية لعلم وظائف الأعضاء، 268، R1327-R1331.
لوك، W.P، تشانغ، Y.، أبيض، T.D. وآخرون. (1999). الأدينوزين. وسيط انترلوكين 1β ؟؟ hippocampol الناجم عن تثبيط متشابك. مجلة علم الأعصاب، 19، 4238-4244.
مانتو، MU، Laute، MA، Aguera، M.، Rogemond، V.، باندولفو، M.، وHONNORAT، J. (2007). الآثار المضادة للالجلوتاميك الأجسام المضادة كربوكسيل حمض المرتبطة بالأمراض العصبية. دورية حوليات طب الاعصاب، 61 (6)، 544-551.
ماير، وس. ف.، Goehler، L.E.، Fleshner، M. وآخرون. (1998). دور العصب المبهم في الاتصالات خلوى إلى الدماغ. حوليات أكاديمية نيويورك للعلوم، 840، 289-300.
مورينو فوينمايور، H.، بورجاس، L.، اريتا، A.، فاليرا، V.، وسوكورو-Candanoza، L. (1996). البلازما الأحماض الأمينية مثير في التوحد. مجلة التحقيقات السريرية، 37 (2)، 113-128.
أوتي، C.، Neylan، TC، موقد فخار، SS، سمراء، WS، وWhooley، MA (2005) الأعراض الاكتئابية وعلى مدار 24 ساعة البولية مستويات إفراز النورادرينالين في المرضى الذين يعانون من مرض الشريان التاجي: النتائج من القلب والروح الدراسة. المجلة الأمريكية للطب النفسي، 162 (11)، 2139-2145.
Palmen، S.، Engelan، H.، هوف، PR، وشميتز، C. (2004). النتائج عصبية مرضية في التوحد. الدماغ، 127، 2572-2583.
بافلوف، VA، وانغ، H.، Czura، CJ، فريدمان، SG، وتريسي، KJ (2003). والكوليني مسار المضادة للالتهابات: الحلقة المفقودة في neuroimmunomodulation. الطب الجزيئي، 9 (5-8)، 125-134.
Polleux، F.، ولودر ج.م. (2004). نحو علم الأعصاب التنموي من مرض التوحد. التخلف العقلي والإعاقات التنموية البحوث تعليقات، 10، 303-317.
شي، L.، فاطمي، SH، سيدويل، RW & باترسون، PH (2003). أسباب الإصابة بالأنفلونزا الأمهات تميزت التغيرات السلوكية والدوائية في النسل. مجلة علم الأعصاب، 23، 297-302.
Shinohe، وآخرون. (2006). زيادة مستويات المصل من الغلوتامات في المرضى البالغين المصابين بالتوحد. التقدم في علم الادوية النفسية والعصبية البيولوجية Psychiastry، 30، 1472-1477.
ييب، J.، Soghomonia، J.J.، وبلات، G.J. (2007). انخفاض مستويات GAD67 مرنا في الخلايا العصبية للدماغ في التوحد: الآثار المرضية في جسم المريض. اكتا أمراض الأعصاب، 113، 559-568.
Vojdani، A.، كامبل، AW، أنيانوو، E.، Kashanian، A.، بوك، K. & Vojdani، E. (2002). الأجسام المضادة لمستضدات الخلايا العصبية الخاصة في الأطفال الذين يعانون من التوحد: ممكن عبر رد فعل مع البروتينات دماغي المنشأ من الحليب، الكلاميديا الرئوية ومجموعة Stretoccoccus A. مجلة علم المناعة العصبية، 129، 168-177.
Vojdani، A.، Mumper، E.، Granpeesheh، D.، Mielke، L.، ترافر، D.، بوك، K.، وآخرون. (2008). انخفاض الخلايا الطبيعية القاتلة النشاط السامة للخلايا في التوحد: دور الجلوتاثيون، IL-2 و IL-15. مجلة علم المناعة العصبية، 205 (1-2)، 148-154.
ويكفيلد، AJ، Murch، SH، أنتوني، A.، لينيل، J.، كاسون، DM، مالك، M.، Berelowitz، M.، ديلون، AP، طومسون، MA، عيد الحب، A.، ديفيس، SE، و ووكر سميث، JA (1998). فائفي-اللمفاوية عقيدية تضخم والتهاب القولون غير محددة، واضطراب النمو المتفشي في الأطفال. انسيت، 351، 637-641.
وانغ، K.، تشانغ، H.، ما، D.، Bucan، M.، Glessner، JT، آبراهامز، BS، وآخرون. (2009). المتغيرات الجينية المشتركة على 5p14.1 المنتسبين الذين يعانون من اضطراب طيف التوحد. الطبيعة، [قبل الإليكتروني (Epub) من طباعة]
Zalcman، S.، GREE جونسون، JM، موراي، L. وآخرون. (1994). التعديلات مونوامين المركزي خلوى محددة الناجم عن انترلوكين 1-2، و-6. أبحاث الدماغ، 15، 287-290.

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس
  #7  
قديم 07-30-2015, 01:21 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي ضعف الجهاز الهضمي في اضطراب طيف التوحد: دور الميتوكوندريا وmicrobiome المعوي

 

http://www.microbecolhealthdis.net/i...cle/view/27458

https://translate.google.com/transla...458&edit-text=

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس
  #8  
قديم 07-30-2015, 01:23 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي شبكة الوضع الافتراضي في الشباب الذكور البالغين الذين يعانون من اضطراب طيف التوحد: العلاقة مع سمات التوحد

 

http://www.molecularautism.com/content/5/1/35

https://translate.google.com/transla...F35&edit-text=

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس
  #9  
قديم 07-30-2015, 01:26 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي عوامل الخطر الوراثية وNonheritable لاضطرابات طيف التوحد

 

http://epirev.oxfordjournals.org/content/24/2/137.full

https://translate.googleusercontent....dMHDQumPH6JMJA

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس
  #10  
قديم 07-30-2015, 01:30 AM
رافت ابراهيم رافت ابراهيم غير متواجد حالياً
عضو ذهبي
 
تاريخ التسجيل: Dec 2011
المشاركات: 520
افتراضي التوحد والإجهاد التأكسدي التدخلات: التأثير على سلوك التوحد

 

http://austinpublishinggroup.com/pha...-v2-id1015.php


https://translate.google.com/transla...php&edit-text=

 

__________________
استشارى الادوية الطبيعيه وباحث وخبير فى علاجات التوحد
رد مع اقتباس
إضافة رد


تعليمات المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا تستطيع إرفاق ملفات
لا تستطيع تعديل مشاركاتك

BB code is متاحة
كود [IMG] متاحة
كود HTML معطلة

الانتقال السريع


 المكتبة العلمية | المنتدى | دليل المواقع المقالات | ندوات ومؤتمرات | المجلات | دليل الخدمات | الصلب المشقوق وعيوب العمود الفقري | التوحد وطيف التوحد  | متلازمة داون | العوق الفكري | الشلل الدماغي | الصرع والتشنج | السمع والتخاطب | الاستشارات | صحة الوليد | صحة الطفل | أمراض الأطفال | سلوكيات الطفل | مشاكل النوم | الـربـو | الحساسية | أمراض الدم | التدخل المبكر | الشفة الارنبية وشق الحنك | السكري لدى الأطفال | فرط الحركة وقلة النشاط | التبول الليلي اللاإرادي | صعوبات التعلم | العوق الحركي | العوق البصري | الدمج التربوي | المتلازمات | الإرشاد الأسري | امراض الروماتيزم | الصلب المشقوق | القدم السكرية



الساعة الآن 09:21 PM.